
NNLeak: An AI-Oriented DNN Model Extraction
Attack through Multi-Stage Side Channel Analysis

Ya Gao∗, Haocheng Ma∗, Mingkai Yan∗, Jiaji He∗§, Yiqiang Zhao∗, and Yier Jin†
∗School of Microelectronics, Tianjin University
†University of Science and Technology of China

{gaoyaya, hc ma, youngminl2021, dochejj, yq zhao}@tju.edu.cn, yier.jin@ustc.edu.cn

Abstract—Side channel analysis (SCA) attacks have become
emerging threats to AI algorithms and deep neural network
(DNN) models. However, most existing SCA attacks focus on
extracting models deployed on embedded devices, such as micro-
controllers. Accurate SCA attacks on extracting DNN models de-
ployed on AI accelerators are largely missing, leaving researchers
with an (improper) assumption that DNNs on AI accelerators
may be immune to SCA attacks due to their complexity. In
this paper, we propose a novel method, namely NNLeak to
extract complete DNN models on FPGA-based AI accelerators.
To achieve this goal, NNLeak first exploits simple power anal-
ysis (SPA) to identify model architecture. Then a multi-stage
correlation power analysis (CPA) is designed to recover model
weights accurately. Finally, NNLeak determines the activation
functions of DNN models through an AI-oriented classifier. The
efficacy of NNLeak is validated on FPGA implementations of two
DNN models, including multilayer perceptron (MLP) and LeNet.
Experimental results show that NNLeak can successfully extract
complete DNN models within 2000 power traces.

Index Terms—Deep Neural Network, Side Channel Analysis,
DNN Model Extraction

I. INTRODUCTION

Deep neural networks (DNNs) have become the dominant
force in artificial intelligence (AI) due to their robust feature
extracting and learning capabilities. Numerous DNN models
are deployed on GPUs and other AI accelerators, which
achieve great success in real-world applications, such as medi-
cal diagnosis, autonomous vehicles and robotics. Typically, the
training process of a DNN is expensive and requires a large
database, which makes DNN’s architecture and parameters not
only intellectual properties but also important security assets.
As a consequence, a well-trained DNN model with huge com-
mercial value is an attractive target for attackers. Nowadays,
model extraction through SCA emerges as a serious threat
to edge devices powered by AI algorithms. In this process,
an adversary carries out model extraction by monitoring side
channel leakage, such as timing, power consumption and
electromagnetic (EM) emanations [1], [2], [3].

Model extraction through SCA attacks can be divided into
two categories, including alternative construction and exact
extraction. In alternative construction, the attacker aims to
obtain an alternative DNN, which has similar accuracy with
the victim DNN. While in exact extraction, the recovered

§Corresponding author.

model has the same architecture and parameters as the victim
DNN. Here, we summarize existing exact extraction through
SCA attacks, as listed in Table I. Batina et al. combine
SPA and CPA techniques to recover the architecture and
parameters of MLPs and a seven-layer convolutional neural
network (CNN) [4]. For 32-bit floating point parameters in
DNNs, they consider the attack successful if the recovered
parameter is correct up to two decimal places. While this
may cause insufficient precision of the data and reduce the
effectiveness of model extraction. Then Takatoi et al. extend
this work to identify activation functions (AFs) implemented
with constant time [5]. Note that these two attacks focus
on DNN models deployed on the microcontrollers. Recently,
Yoshida et al. exploit CPA to extract DNN models deployed
on FPGA platforms. Due to the binary shifted problems, they
only recover partial weights of a small-scale MLP with 9
neurons and two systolic arrays [6], [7]. Based on differential
power analysis (DPA) techniques, Dubey et al. recover the
1-bit parameters from the hardware of the adder tree, which
stores multiplication results in the binarized neural network
(BNN) [8].

From the above analysis, we observe that existing tech-
niques of model extraction confront following challenges.
Most of them are applicable to DNN models running on simple
software platforms. While for those hardware implementa-
tions, many techniques can only recover small-scale DNNs or
partial modules of AI accelerators. In addition, the recovery
weights of DNNs are limited by the binary shifted problem,
resulting in false positive results. These drawbacks make
existing techniques less practical in real-world applications.

To this end, we propose an extraction method called
NNLeak (see Figure 1). NNLeak adopts a multi-stage side
channel attack strategy, which combines both SPA and CPA,
to identify the architecture and recover weights of the DNN
models. Also, NNLeak incorporates the idea of AI attacking
AI to recover complete DNN models on FPGA-based AI
accelerators. To demonstrate their effectiveness, we deploy
two DNN models, MLP [9] and LeNet [10], which are widely
used in the field of computer vision, on an FPGA platform.
Experimental results prove that NNLeak is able to recover not
only the AI model architecture (e.g., the number of layers
and neurons) but also all parameters (e.g., weights and AFs)
precisely.

The main contributions of this paper are listed as follows.979-8-3503-4099-0/23/$31.00 ©2023 IEEE

20
23

 A
si

an
 H

ar
dw

ar
e

O
rie

nt
ed

 S
ec

ur
ity

 a
nd

 T
ru

st
 S

ym
po

si
um

 (A
si

an
H

O
ST

) |
 9

79
-8

-3
50

3-
40

99
-0

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

A
si

an
H

O
ST

59
94

2.
20

23
.1

04
09

39
6

Fig. 1. The proposed NNLeak.

TABLE I
EXISTING SCA BASED MODEL EXACT EXTRACTION ATTACKS

Work Physical Target Model Attack Target
architecture weights AF

Batina. [4] microcontroller MLP (50-30-20-50), CNN(7-layer) ✓ ✓ ✓
Yoshida [6] FPGA MLP (2-5-2) × ✓ ×
Yoshida [7] FPGA Systolic array∗ × ✓ ×
Dubey [8] FPGA Adder tree∗ × ✓ ×
Takatoi [5] microcontroller MLP (3-3-9), MLP (3-9-9) × × ✓
our work FPGA MLP (62-20-10), LeNet(7-layer) ✓ ✓ ✓

∗ Data has not been reported.

• A practical framework, namely NNLeak, is proposed
for exact extraction of DNN models. Its effectiveness is
validated using two real-world DNNs implemented on
FPGA platforms.

• One multi-stage SCA method is proposed. First, SPA
is utilized for architecture identification. Then multi-
stage CPA is used to solve the common binary-left or
binary-right shifted problem in CPA attacks on weight
multiplication, and thus extract the weight precisely.

• Inspired by the idea of AI attacking AI, an AI-oriented
AF classifier is proposed for constant time AF recogni-
tion.

• Experimental results show that, we can precisely recover
DNN models, including the number of layers, neurons,
weights and the type of AFs, from an FPGA-based AI
accelerator.

The rest of the paper is organized as follows. Section II
briefly introduces some background on DNNs and SCAs.
Section III describes our NNLeak of the model extraction
attack. Section IV and Section V present the experimental
results of the proposed attack. Section VI concludes this paper
finally.

II. BACKGROUND

A. Deep Neural Network

Deep neural networks (DNNs) are computational models
that include different types and numbers of layers, as well as
parameters such as weights, biases and activation functions.
Neurons are important blocks in DNNs for extracting data
features and Equation (1) depicts their specific operations.

hk = f

(
n−1∑
i=0

(xi ·Wxihk) + bk

)
(1)

where xi is the output value of the previous layer, Wxihk is
the weight corresponding to xi, and bk is the bias. f(x) is the
nonlinear activation function, which is the last operation of
the neuron and is used to extract further feature information.

MLPs are the most basic DNNs. A typical MLP consists of
three fully connected layers named input layer, hidden layer,

and output layer. As the scale of DNNs’ application scenarios
grows, the development of MLPs is limited and more complex
CNNs are proposed and widely used. CNNs are made up of
convolutional layers, pooling layers, and fully connected layers
that capable of extracting more intricate and abstract high-level
features from inputs.

B. Side Channel Analysis

SCA attacks aim to recover sensitive information by moni-
toring power consumption, EM emanations, timing, and other
information inadvertently released by devices. Early SCA
attacks are widely used to steal keys in cryptographic algo-
rithms [11]. Typically, there are two main types of common
SCAs, including simple power analysis (SPA) and differential
power analysis (DPA).

SPA performs coarse-grained analysis of a single or few
traces with the help of visual inspection, expecting to obtain
sensitive information. In DPA, the adversary will first build the
leakage model to map different hypotheses of the secret after
collecting a set of traces. The traces are then compared with
the leakage model through statistical methods to determine
the correct hypothesis. CPA is the evolved version of DPA, it
regards Pearson correlation as the distinguisher to reveal the
correct hypothesis, as given in Equation (2).

ri,j =

∑D
d=1(hd,i − hi) · (td,j − tj)√∑D
d=1(hd,i − hi)2 · (td,j − tj)2

(2)

Assuming that the attacked weight is 8-bit, the attacker has
a total of 28 weight hypotheses, i.e., i = 28. D represents
the number of power measurements. hd,i denotes the theo-
retical leakage model after the input d is calculated with the
hypothesis i. Usually we use the Hamming distance (HD) or
Hamming weight (HW) model. td,j is the power consumption
value of the d-th power measurement at the j-th time point.
The calculation result ri,j count the correlation value of all
weight hypotheses with the real power measurements during
the attack time period, where the correct weight hypothesis
will stand out with a higher value.

III. MODEL EXTRACTION TECHNIQUES

In this section, we will introduce the overall framework
of NNLeak. Based on a series of techniques, it recovers the
architecture, weights and activation functions in turn.

A. Threat Model

In this work, we assume that DNN models are deployed
on FPGAs for hardware acceleration, which helps execute
the inference process. Although the attacker does not know
the training dataset, he has physical access to FPGAs. By
importing carefully designed input stimuli, the attacker collects
power consumption traces to extract architecture and parame-
ters of DNN models. We further assume that DNN models do
not equip with side channel protection mechanisms [12].

B. Architecture Recovery

To perform exact extraction, the first step is to identify the
DNN architecture, e.g., the number of layers and neurons.
Inspired by previous work [13], NNLeak applies SPA to realize
the objective of architecture recovery. During the inference
procedure, involving operations will execute layer by layer
and process different amounts of data. This results in different
characteristics of power consumption that are related to model
architecture, making clear boundaries in the power traces. For
each layer, neurons are also executed one by one. All neurons
perform the same operation, so the power consumption traces
have a clear regularity that can be further localized to the
execution window of each neuron.

C. Weights Recovery

After extracting the DNN architecture, NNLeak tries to
extract model weights layer by layer. In this step, the attacker
targets the arithmetic multiplication of a known input xi with
a secret weight Wxihk. The multiplication result Pxihk is
stored in registers and causes bit transitions, resulting in data-
dependent power leakages. Figure 2 shows the calculation of
the first neuron in the hidden layer, it contains i weights
associated with i input layer neurons. For simplicity, we
take the weight Wx1h1 as an instance to describe weights
extraction. Given random input stimuli, multiple sets of power
traces are collected from the hardware implementation of the
DNN model. The leakage model is built based on the HD of
the product Px1h1. Note that Px1h1 is the product of weight
Wx1h1 and received input x1. According to Equation (2), we
calculate the Pearson correlation between the leakage model
and collected traces. The true value of Wx1h1 often has a high
correlation and can be separated from other false hypotheses.

If false hypotheses have 2n-fold relationship with the correct
weight, binary representations of their products will have a
shifted relationship. In this scenario, the amount of 1 in binary
terms keeps the same while their positions change by moving
left or right. Equation (3) lists the products for the same input
126 with several hypotheses of the target weight, e.g., 16, 32
and 64. Here we regard 32 as the correct weight. Considering
registers switch from reset states to product results, the above
three weights point to the same leakage model. As a result,

Fig. 2. Internal operation of the first hidden layer neuron h1.

no clear distinction can be seen from their correlation traces.
The weights recovered by CPA may be false positive results,
i.e., binary left-shifted or binary right-shifted values of the true
weights.

126×16(00010000)2=1026=(0000011111100000)2
126×32(00100000)2=4032=(0000111111000000)2
126×64(01000000)2=8064=(0001111110000000)2

(3)

We propose a multi-stage CPA method to separate the true
weight from false positive results. Specifically, we truncate
higher bits of the obtained product in turn to build leakage
models. They reflect power variations caused by data bits of
partial products. As shown in Equation (3), when the higher
4-bit is truncated, leakage models of false hypothesis 64 start
to diverge from other guessed weights. When lower 11-bit
retains after truncation operations, leakage models related to
correct weight 32 can be distinguished from false guess 16.
For false hypotheses, the correlation coefficients between their
leakage models and power traces will gradually decrease.
Correspondingly, the true value of weight will stand out in
this procedure. Therefore, multi-stage CPA can eliminate the
effect of the shifted problem. We take the multiplication result
of this true weight as the current state of registers. The multi-
stage CPA will execute again to extract the next target.

All the weights corresponding to each neuron are extracted
by the CPA described above. Since DNNs are executed layer
by layer, the attacker is allowed to use the weights and AF
recovered from the previous layer with the input stimuli to
compute the inputs for the next layer. Further, the inputs can be
used to construct a new leakage model to extract the weights
of the next layer.NNLeak iterates the process until all weights
are extracted.

D. Activation Function Recovery

The common AFs in DNNs are ReLU, Sigmoid, Tanh,
Softmax, Swish and so on. Their identification is essentially
equivalent to a classification problem, which is also an im-
portant step in exact extraction. Previous works like timing
SCA [4] and direct observation [5] are effective in targeting AI
models on software-programmed microcontrollers. However,
their efficacy of model extraction targeting FPGA-based AI
accelerators is limited. FPGAs often use piecewise linear
approximation (PWL) and lookup tables to implement AFs.
These implementations replace various and intricate nonlin-
ear functions with simple linear functions or straightforward
data mappings. Thus, the power traces of AFs will become

similar and not easily identified by direct observation. Also,
in previous methods, attackers modulate the input stimuli of
AFs to amplify their power variations. This is difficult to
achieve stimuli modulation in DNN models with large-scale
parameters.

We implemented five typical activation functions executed
in constant time, including ReLU, Sigmoid, Tanh, Softmax,
and Swish [14], [15], on a 16-bit quantized MLP model
using the PWL method. We then deploy the model on an
FPGA. In order to compare their power variations, we select
the Euclidean distance and cosine similarity as evaluation
criteria, as shown in Figure 3. The Softmax function has a
different power distribution since it executes more arithmetic
operations. The remaining functions are not distinguished
easily due to similar power distributions.

Inspired by the idea of AI attacking AI, NNLeak exploits
AI-oriented techniques to extract the AFs on FPGA-based
AI accelerators. Various classifiers like MLP, support vector
machines (SVM), Naive Bayes, and CNN satisfy our require-
ments. For proof of concept, here we choose MLP to solve
the classification problem. For each AF, we collect 500 power
traces as a database to train our classifier. Our classifier is able
to identify the AF of the DNN with an accuracy of 99.6%.
In the practical attack, for any unknown DNNs, the attacker
can implement several common AFs based on the quantization
bits of DNN’s parameters and train a classifier. By extracting
the traces from the AF execution window and sending them
to the classifier, the type of AFs is determined.

(a) Euclidean distance (b) cosine similarity

Fig. 3. The degree of difference between AFs.

IV. CASE STUDY: MLP MODEL EXTRACTION

A. Experimental Setup

To evaluate the proposed NNLeak, we implement two ex-
emplary DNNs, an MLP and a LeNet, on a Sakura-G platform
(see Figure 4). These designs are operated with a clock
frequency of 50MHz and a supply voltage of 1.8V. The power
consumption is measured using an on-board amplifier. The
collected signals are sampled at 2.5 GS/s by an oscilloscope
with a 500 MHz bandwidth. To eliminate the measurement
noise, we take the average of 16 power traces as the data for
analysis.

B. Hardware Implementation of MLP

We choose an MLP for MNIST purpose. This MLP has
3 layers with 62, 20 and 10 neurons, respectively. All the

Fig. 4. The experimental setup for NNLeak.

parameters are expressed by 16-bit fixed point, and the high
8-bit is set to either 11111111 or 00000000. The MLP gets
its inputs from the MNIST database, which contains 60000
training images and 10000 testing images. Using feature
conditioning algorithms, each 28× 28 pixel image is reduced
into 62 features.

Table II describes the execution process of MLP. Start-
ing from the first neuron in the hidden layer, all neurons
perform the same multiplication, accumulation and activation
function operations one after another. Therefore, the power
traces of MLP should theoretically have obvious regularity
and boundaries. The number of layers and neurons can be
further confirmed.

TABLE II
THE EXECUTION PROCESS OF MLP

operation cycles
x1 ×Wx1h1, x2 ×Wx2h1......x62 ×Wx62h1 1

Accumulation 1
Activation Function 1

...... ...
x1 ×Wx1h20, x2 ×Wx2h20......x62 ×Wx62h20 1

Accumulation 1
Activation Function 1

C. Model Extraction on MLP

Figure 5 shows the complete power traces of the MLP.
Based on the magnitude of the power peak, NNLeak can
distinguish the hidden layer and the output layer. After inputs
are sent to the MLP, neurons in the hidden layer start the
computation sequentially, showing 20 similar power peaks,
which means 20 neurons. The results of the hidden layer will
be sent to the output layer for further computation, and the 10
similar power peaks represent 10 neurons in the output layer.
As a result, NNLeak successfully extracts the number of layers
and neurons in MLP through SPA.

In the step of extracting weights, the HD model will be built
first based on hypotheses of the weight. As the MLP is 16-bit
quantized, there are 216 hypotheses for one weight in theory.
Since the high 8 bits of the parameters are fixed as two cases,
the candidate hypotheses are compressed to 2× 28. Next, we
send 2000 random inputs to the MLP and collect power traces.

Fig. 5. Power traces of the MLP execution process.

Finally, we locate the multiplication operation of each neuron
by means of windowing and perform CPA.

According to the execution characteristics of the MLP, given
a set of inputs, all the 20 weights multiplied with x1 can be
extracted with 100% accuracy directly. The CPA results for the
weights associated with the input x1 are shown in Figure 6,
with the x-axis representing the number of traces required for
a successful attack and the y-axis representing the correlation
coefficient. We demonstrate the attack results for four of the
weights. Wx1h1 to Wx1h4 represent the weights between the
hidden layer neurons h1 to h4 and x1, respectively. The
red line represents the true weight and the other gray lines
represent false hypotheses. It can be seen that only after about
100 traces, the correlation of the true weight outweighs false
hypotheses in a conclusive manner. Iterating the same attack
for each multiplication, other weights can also be extracted
exactly.

(a) Wx1h1 recovery (b) Wx1h2 recovery

(c) Wx1h3 recovery (d) Wx1h4 recovery

Fig. 6. CPA results on the weights of MLP.

V. CASE STUDY: LENET MODEL EXTRACTION

A. Hardware Implementation of LeNet

We then extend the attack’s applicability from MLPs to
CNNs. Although LeNet is relatively simpler than modern CNN
models, it is indeed the first network used for the commercial
purpose, such as handwritten digit recognition on checks. The

LeNet we selected consists of three convolutional layers, two
max pooling layers, and two fully-connected layers. It also
takes the MNIST database as the input. All images are padded
with zero to 32× 32 pixels.

We choose a hardware code of LeNet [10], where all the
parameters are 8-bit quantized. Due to the huge amount of pa-
rameters in LeNet, the code utilizes a pipeline structure to ac-
commodate layers with different parallelism. Specifically, the
multiplication operations of a convolution kernel are typically
performed in parallel, whereas the different convolutional,
pooling and fully connected layers are performed sequentially
using a pipelined structure. This method can improve the
overall performance and increase the throughput of LeNet.

Input data and weights are stored in row buffers and on-
chip parameter buffers, respectively. The convolution operation
is performed by processing elements (PEs), which are the
basic units for convolutional multiplication and consist of a
set of Multiply and Accumulates (MACs). During the PE
execution (see Figure 7), the weights are preloaded, followed
by reading input data using row buffers and performing matrix
multiplication.

Fig. 7. The PE execution.

B. Model Extraction on LeNet
The experimental setup for model extraction on LeNet is

the same as for MLP. Figure 8 depicts the execution process
after a portion of input data is loaded into the LeNet model.
The 1024 input data are sequentially sent to row buffers and
start performing convolution, activation function and pooling
operations. These operations can be identified in the power
traces. The results of the pooling layer are then provided to
the next convolutional layer.

Next, NNLeak executes the weight extraction attack from
the weight of the first convolutional layer. The input data are
sequentially multiplied with the weight of the convolution
kernel in turn. The 16-bit product of LeNet is stored in
registers. We also provide 2000 input data and build an HD
model of registers based on 28 hypotheses of the weight.
Then, we perform CPA on power traces and obtain the attack
results for the first weight associated with the first input data,
as shown in Figure 9(a). However, the initial CPA result is
not robust, with high correlation positions clustering several
candidate hypotheses. Experiment result shows the true weight
8’d4 (the red line) is hidden, which means the result faces the
problem of binary-left or binary-right shifted.

Fig. 8. The execution process of LeNet.

To recover the true weight, we further adopt the multi-
stage CPA proposed in Section III. Five hypotheses (8’d4,
8’d8, 8’d16, 8’d32, 8’d64) with the highest correlation are
selected for further finding the true value. We build HD models
and carry out CPA attacks by sequentially truncating from the
highest bit according to the products of these five hypotheses.
Figure 9 shows the results of each stage in the multi-stage CPA
attack. It can be clearly seen that 8’d4 starts to highlight from
the CPA result of the lower 12-bit HD model. Continuing the
truncation to lower 10-bit, the correlation of the HD model
of 8’d4 is much higher than the other false positive results.
At this point, we solve the binary-left or binary-right shifted
problem and extract the correct weights 8’d4 precisely.

(a) 16-bit HD model (b) lower 14-bit HD model

(c) lower 12-bit HD model (d) lower 10-bit HD model

Fig. 9. CPA results on the weight of LeNet.

As for the pooling layer, we use the maximum pooling
layer by default for most CNNs deployed on the FPGA,
which requires only logical value comparison and is well-
suited for FPGA computing. Finally, the fully connected layer
is recovered using the same method as the MLP.

VI. DISCUSSION AND CONCLUSION

As more DNNs are deployed on AI accelerators for Internet
of Things (IoT) and edge devices, the security and privacy of
AI models should be considered. In this paper, the proposed
NNLeak precisely extracts the architectures and parameters

of two sample DNN models deployed on an FPGA platform
using an AI-oriented multi-stage SCA approach. NNLeak
demonstrates the urgency for DNN model protection on AI
accelerators. However, as the model’s scale grows, the time
cost of exact extraction will increase significantly, as will the
threshold of traces required to obtain an acceptable success
rate. In the future, we will adopt exact extraction to assist al-
ternative construction, extending the attack to DNN models in
real-world devices such as smart home security systems, facial
recognition security cameras, and other devices. Meanwhile,
research on the defense mechanism of AI accelerators needs
to be enhanced to improve the security of DNNs.

ACKNOWLEDGEMENTS

This work is supported in part by the National Key R&D
Program of China (Grant No. 2021YFB3100903).

REFERENCES

[1] L. Batina, S. Bhasin, D. Jap, and S. Picek, “Poster: Recovering the
input of neural networks via single shot side-channel attacks,” in
Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, 2019, pp. 2657–2659.

[2] H. Yu, H. Ma, K. Yang, Y. Zhao, and Y. Jin, “Deepem: Deep neural
networks model recovery through em side-channel information leakage,”
in 2020 IEEE International Symposium on Hardware Oriented Security
and Trust (HOST). IEEE, 2020, pp. 209–218.

[3] Y.-S. Won, S. Chatterjee, D. Jap, A. Basu, and S. Bhasin, “Wac:
First results on practical side-channel attacks on commercial machine
learning accelerator,” in Proceedings of the 5th Workshop on Attacks
and Solutions in Hardware Security, 2021, pp. 111–114.

[4] L. Batina, S. Bhasin, D. Jap, and S. Picek, “{CSI}{NN}: Reverse
engineering of neural network architectures through electromagnetic side
channel,” in 28th USENIX Security Symposium (USENIX Security 19),
2019, pp. 515–532.

[5] G. Takatoi, T. Sugawara, K. Sakiyama, Y. Hara-Azumi, and Y. Li,
“The limits of sema on distinguishing similar activation functions of
embedded deep neural networks,” Applied Sciences, vol. 12, no. 9, p.
4135, 2022.

[6] K. Yoshida, T. Kubota, M. Shiozaki, and T. Fujino, “Model-extraction
attack against fpga-dnn accelerator utilizing correlation electromagnetic
analysis,” in 2019 IEEE 27th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM). IEEE, 2019, pp.
318–318.

[7] K. Yoshida, M. Shiozaki, S. Okura, T. Kubota, and T. Fujino, “Model
reverse-engineering attack against systolic-array-based dnn accelerator
using correlation power analysis,” IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sciences, vol. 104, no. 1,
pp. 152–161, 2021.

[8] A. Dubey, R. Cammarota, and A. Aysu, “Maskednet: The first hardware
inference engine aiming power side-channel protection,” in 2020 IEEE
International Symposium on Hardware Oriented Security and Trust
(HOST). IEEE, 2020, pp. 197–208.

[9] https://gitlab.com/hadi sfr/verilog neural network.
[10] https://github.com/djtfoo/lenet5-verilog.
[11] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Annual

international cryptology conference. Springer, 1999, pp. 388–397.
[12] S. Maji, U. Banerjee, S. H. Fuller, and A. P. Chandrakasan, “A threshoid-

impiementation-based neural-network accelerator securing model pa-
rameters and inputs against power side-channel attacks,” in 2022 IEEE
International Solid-State Circuits Conference (ISSCC), vol. 65. IEEE,
2022, pp. 518–520.

[13] L. Batina, S. Bhasin, D. Jap, and S. Picek, “Sca strikes back: Reverse
engineering neural network architectures using side channels,” IEEE
Design & Test, 2021.

[14] I. Kouretas and V. Paliouras, “Hardware implementation of a softmax-
like function for deep learning,” Technologies, vol. 8, no. 3, p. 46, 2020.

[15] H. Amin, K. M. Curtis, and B. R. Hayes-Gill, “Piecewise linear
approximation applied to nonlinear function of a neural network,” IEE
Proceedings-Circuits, Devices and Systems, vol. 144, no. 6, pp. 313–317,
1997.

