
PATHFINDER: Side Channel Protection through Automatic
Leaky Paths Identification and Obfuscation

Haocheng Ma∗, Qizhi Zhang∗, Ya Gao∗, Jiaji He∗, Yiqiang Zhao∗, and Yier Jin†
∗School of Microelectronics, Tianjin University

†Department of Electrical and Computer Engineering, University of Florida

hc ma@tju.edu.cn, qizhi zhang@tju.edu.cn, gaoyaya@tju.edu.cn, dochejj@tju.edu.cn, yq zhao@tju.edu.cn, yier.jin@ece.ufl.edu

Abstract—Side-channel analysis (SCA) attacks show an enor-
mous threat to cryptographic integrated circuits (ICs). To address
this threat, designers try to adopt various countermeasures dur-
ing the IC development process. However, many existing solutions
are costly in terms of area, power and/or performance, and may
require full-custom circuit design for proper implementations.
In this paper, we propose a tool, namely PATHFINDER, to
automatically identify leaky paths and protect the design, and is
compatible with the commercial design flow. The tool first finds
out partial logic cells that leak the most information through
dynamic correlation analysis. PATHFINDER then exploits static
security checking to construct complete leaky paths based on
these cells. After leaky paths are identified, PATHFINDER will
leverage proper hardware countermeasures, including Boolean
masking and random precharge, to eliminate information leakage
from these paths. The effectiveness of PATHFINDER is vali-
dated both through simulation and physical measurements on
FPGA implementations. Results demonstrate more than 1000×
improvements on side-channel resistance, with less than 6.53 %
penalty to the power, area and performance.

Index Terms—CAD for Security, Side Channel Analysis, Coun-
termeasure

I. INTRODUCTION

Cryptographic algorithms provide services of data encryp-
tion and identity authentication, playing an important role
in modern information security scenarios. Nowadays, crypto-
graphic algorithms are widely deployed in critical applications
including autonomous vehicles, electronic banking, mobile
communication, and cloud computing. Despite the fact that
these algorithms are mathematically secure and are resistant
to various attacks targeting the algorithms themselves, their
hardware implementations are vulnerable to physical attacks,
e.g. side-channel analysis (SCA) [1]. SCA attack is the process
of analyzing side-channel leakage through which attackers can
extract sensitive internal information. The sensitive internal
information may not be available through traditional cryp-
tography analyses. Examples of side channels include power
consumption, timing delay, electromagnetic (EM) emanations,
heat, optical leakage, etc. Among them, power and EM SCA
attacks on cryptographic integrated circuits (ICs) have gained
tremendous importance over the last decade.

Numerous countermeasures have been equipped on modern
ICs to defend against SCA attacks. For most of the hardware

countermeasure schemes in use, the underlying concepts can
be classified into two categories, namely hiding and masking
techniques. These methods act on those secret-dependent
intermediate data, denoted as sensitive variables, which usu-
ally are sources of leakage during cipher execution. Hiding
techniques represent a group of techniques aiming to breach
the correlation between the side-channel information and these
sensitive variables. They can be implemented by randomizing
switching behaviors, attenuating signatures of sensitive blocks,
adding components that generate random noise, etc. While
masking techniques try to obfuscate the internal computation
and thus isolate the side-channel information from the sensitive
variables [2]. On the basis of secret sharing, sensitive variables
are split into several shares and imported to circuit operations
separately. However, in addition to significant power, area
and speed overhead increases, these countermeasures require
designers to have sufficient hardware security background to
implement them correctly. To address these concerns, design-
ers develop tools to first identify sources of leakage, then
apply protections to specific vulnerable modules [3] or logic
cells [4].

In this paper, we pay attention to identifying and obfuscating
leaky paths at the gate level of the design. Information leakage
caused by sensitive variables will propagate through leaky
paths within the design. Unlike protecting each vulnerable
cell, countermeasures on leaky paths take multiple vulnerable
cells as a whole to be protected. Meanwhile, this type of
protection can avoid excessive efforts on irrelevant logic cells
in a vulnerable module. Hence we can realize sufficient
security improvement with less area, power and performance
overheads. A novel tool, namely PATHFINDER, is developed
for the above purpose. In path identification, PATHFINDER
combines dynamic correlation analysis and static security
checking to find out all leaky paths quickly. Then in path
obfuscation, PATHFINDER exploits hardware solutions like
Boolean masking and random precharge to protect leaky
paths automatically. The tool can be easily integrated into the
existing design flow and not tied to a specific technology node.

The main contributions of the paper are as follows.
• We develop the tool, named PATHFINDER, to support

automated side-channel protection. This tool can identify
and obfuscate leaky paths automatically and is compatible
with the existing EDA design flow.

• PATHFINDER combines dynamic correlation analysis and

DAC '22, July 10–14, 2022, San Francisco, CA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9142-9/22/07…$15.00
https://doi.org/10.1145/3489517.3530413

79

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3489517.3530413&domain=pdf&date_stamp=2022-08-23

static security checking to identify complete leaky paths.
The combination of dynamic and static steps enables
accurate and efficient results.

• In path obfuscation, PATHFINDER leverages logic trans-
formation to deploy hardware protection on leaky paths
automatically. A well-designed control unit is inserted to
balance the security and overheads.

• Both simulated and real experiments are performed on the
cryptographic design, respectively. Experimental results
validate the efficacy of the proposed tool PATHFINDER
in the view of security and cost.

The rest of the paper is organized as follows. Section II goes
over existing leakage detection and mitigation against SCA
attacks. In Section III, we introduce the overall framework
of PATHFINDER. Section IV demonstrates the simulated and
actual results of PATHFINDER and compares results with
existing works. Finally, we conclude the paper in Section V.

II. BACKGROUND

A. Leakage Detection Approaches

Given hardware design details, leakage detection at the
pre-silicon stage has the capability to root-cause the source
of leakage. This will facilitate designers to strengthen the
insecure design prior to fabrication. For example, RTL-PSC
first estimates the power profile of register-transfer level
(RTL) design, then combines Kullback-Leibler divergence
and success rate to identify vulnerable blocks [5]. PLAN
performs trace modeling on the RTL codes and computes
side-channel vulnerability factors to pinpoint leaking modules
within designs [3]. ACA exploits gate-level simulation to rank
cells of designs according to contribution quantities of their
leaked information [4]. Further, CASCADE enables evaluating
the side-channel vulnerabilities within netlist at every design
stages [6].

Previous approaches can narrow sources of side-channel
leakage to specific modules or even logic cells. This allows
designers to apply countermeasures more accurately and only
for those vulnerable parts of a design. However, the emphasis
on the vulnerable modules or even cells omits the impact of a
leaky path. In a leaky path, information leakage propagates
among cascaded logic cells, and thus all cells in the path
may be vulnerable to SCA attacks. As will be demonstrated
in the paper, countermeasures targeting leaky paths avoid the
drawbacks of block-level and cell-level approaches. Hence, in
this paper, instead of focusing on vulnerable cells/modules,
we try to identify and protect the leaky paths leaking sensitive
information.

B. Leakage Mitigation Approaches

Various leakage mitigation solutions have been proposed,
covering different hierarchies of hardware descriptions and
ranging from the whole design to single logic cells. Solutions
such as noise injection [7], integrated voltage regulators [8]
and current signature attenuation [9] are often applied to
the whole circuit or submodules. They exploit additional
circuits to introduce noise parts or suppress signal parts of

the side-channel information. Although effective on security,
protection of the entire block aggravates the burden with
aspects of power, area and performance. Another type of
solution is secure logic styles, like sense amplifier-based logic
(SABL) and wave dynamic differential logic (WDDL). They
try to equalize or randomize the side-channel behavior under
different conditions. Traditionally, logic cells of the design are
replaced globally with corresponding secure logic. Even in [4],
the authors apply them locally on identified vulnerable cells,
the additional overhead will be unacceptable as vulnerable
cells increase.

Inspired by [3] and [4], we attempt to investigate the leakage
propagation due to signal connectivity of vulnerable logic
cells. This means that we can separate identified cells as
different groups, i.e., leaky paths, and embed generic coun-
termeasures on them. The concept of masking is attractive in
terms of obfuscating the side-channel information within leaky
paths. However, conventional solutions are always algorithmic
dependent and make sophisticated modifications to the entire
circuit, resulting in high power and area overheads. To address
this, we develop the PATHFINDER to automatically deploy
masking solutions on the hardware description of leaky paths.

III. METHODOLOGY

In this section, we will introduce the framework of
PATHFINDER. Figure 1 illustrates the overall workflow of
PATHFINDER that consists of dynamic correlation analysis,
static security checking and path obfuscation. The former two
steps complete the path identification together.

A. Dynamic Correlation Analysis

Inspired by [4], dynamic correlation analysis ranks logic
cells according to their leaked information. This is realized
by quantifying the correlation between dynamic power traces
of logic cells and given leakage models. Typically, designers
treat those cells that leak information beyond the threshold
as vulnerable cells. Then mitigation solutions are applied
to them. However, dynamic correlation analysis encounters
the following challenges when constructing complete leaky
paths. Accurate but efficient collections of dynamic traces
may be infeasible under limited experimental environments.
Also, predefined thresholds may lose those logic cells with
group contributions to side-channel leakage. These limitations
result in either excessive cost or incomplete results for path
identification. To this end, the dynamic correlation analysis of
PATHFINDER is designed to elect partial vulnerable cells with
topmost leakage contribution (see Figure 1 (a)). Then complete
leaky paths are found by following static security checking.

Power Simulation. PATHFINDER first collects the dynamic
power of each logic cell by gate-level power simulations.
Given a set of stimuli, we perform function simulation on the
post-layout netlist back-annotated accurate delay information.
The switch activities of all logic cells are recorded over a
period. This file, along with the technology library, design
netlist and parasitic data, are imported to Primetime PX for
time-based power analysis.

80

Vulnerable post
synthesis netlist

Vulnerable post
layout netlist

Step one: Dynamtic
Correlation Analysis

Power Simulation Leakage Ranking

Partial logic cells that exceed
predefined threshold

Attack model
at bit level

Technology library
Input stimuli

Intermediate cells

Irrelevant cells

Source cells

Topological Analysis Attribute Examination

(a)

(b)

(c)

Logic Transformation
Enhanced post
synthesis netlist

Step two: Static
Security Checking

Step Three:
Path Obfuscation

Fig. 1: The overall framework of PATHFINDER.

Leakage Ranking. PATHFINDER then quantifies the in-
formation leakage of each logic cell, where the maximum
Pearson correlation coefficient ρ serves as the leakage crite-
rion. As shown in Equation (1), this criterion C manifests the
dependency between power traces P and the leakage model
L. Here the leakage model denotes the Hamming weight or
Hamming distance of sensitive variables per bit v. It lies
on the designer to select sensitive variables for protection,
such as keys of cryptographic algorithms. PATHFINDER ranks
logic cells within the netlist from highest leakage criterion
to lowest. According to a predefined threshold, we obtain a
group of logic cells carrying most information leakage through
traversing all data bits.

C = max(|ρ(P,L)|) (1)
B. Static Security Checking

For one leaky path, the information leakage caused by
sensitive variables will start from the source cell, pass through
multi-level intermediate cells until irrelevant cells. In general,
the source cell leaks the most information. Thus we can locate
source cells in partial logic cells obtained from the above step.
As illustrated in Figure 1 (b), PATHFINDER uses topological
analysis to achieve this goal. While attribute examination
expands subsequent intermediate cells for complete leaky
paths.

Topological Analysis. As the post-synthesis netlist consists
of several modules, the topological analysis first splits it
into individual module files. Next, PATHFINDER describes the
intrinsic connectivity of every module using two dictionaries.
One dictionary, named CELL, lists signal nets passing in and
out per logic cell. The other dictionary, named NET, records
logic cells that connect before and after per signal net. With
the help of CELL and NET, we can quickly stepwise inference
antecedent network or consequent network from the certain
logic cell. Hereafter, PATHFINDER back annotates partial logic
cells into the post-synthesis netlists and builds antecedent
networks within the bound of this group. Those cells at the
head of antecedent networks are source cells in the leaky paths.
Sensitive variables begin to propagate from source cells and
thus produce power profiles highly correlated with them.

Attribute Examination. Starting from source cells,
PATHFINDER will construct consequent leaky paths by at-

tribute examination. So-called attribute examination aims to
check whether certain logic cell inherits the power profile
closely related to sensitive variables. Here we define the
concept of the leakage attribute during attribute examination.

Take one logic cell as instance, the cell receives the sensitive
variable vc from the antecedent source cell or intermediate cell.
Its logic function reads a1, a2, ..., an−1, vc and then outputs
Oc. Considering the sensitive variable changes from vc to vp,
state transition from Oc to Op will happen. State transitions
vc → vp and Oc → Op determine the power profile of the
logic cell and its antecedent cell, respectively. If the logic cell
belongs to leaky paths, it should demonstrate a similar power
profile as the known antecedent source cell or intermediate
cell. Equation (2) formulates the above relation as the leakage
attribute. Here we neglect the slight divergence between power
profile of state transition 0 → 1 (0 → 0) and 1 → 0
(1 → 1). This means that an intermediate cell will spread state
transitions of sensitive variables to its output net, no matter
how other input nets change. We exploit the leakage attribute
to check all logic cells in the technology library and annotate
agreeable cells beforehand. Through examining the gate type,
PATHFINDER constructs complete leaky paths step by step for
all modules. The final leaky paths are manifested as networks
that flow across all data bits of sensitive variables.

∀(a1, a2, ...an−1),
∣∣Oc−Op

∣∣= ∣∣vc−vp
∣∣ (2)

C. Path Obfuscation

Once leaky paths have been identified, the PATHFINDER
automatically selects simple but efficient solutions such as
Boolean masking and random precharge to protect them
locally, as illustrated in Figure 1 (c). Logic transformation
translates protection solutions on post-synthesis netlist.

Logic Transformation. The final hardware scheme is
shown in Figure 2 (a), containing origin logic (black part),
Boolean masking (blue part) and random precharge (green
part). Take one path, for example, PATHFINDER starts Boolean
masking at source cells usually of sequential logic. An XOR
gate encodes the sensitive variable v with uniformly random
masks m (Line 1). The masked variable vm propagates
throughout the leaky path so that the whole data flow is
obfuscated (Lines 3 and 5). The same XOR gate will be added

81

D Q

D Q

Partial

leaky path
Partial

leaky path

s

FF1

FF2

XOR1

M
U

X

delay cell

r

v

m

ct

q

cd

control unit

Tcd-s

ck
Tc-q

Tcomb

Tct-cd NAND

XOR2

D Q

D Q
clk

ck

ck

ct

Tclk-ck

Tclk-ct

clock tree

vo

clk

ck

vm

r

s

vo

value-r1

value-vm1

value-r2

value-vm2

value-r1 value-vm1

vm

(b)(a)

Fig. 2: The hardware scheme of protection solutions, including Boolean masking (blue) and random precharge (green).

before irrelevant cells to decode masked variables (Line 6).
Accordingly, a flip-flop (FF) is required to store and deliver
the masks. PATHFINDER allows users to define the number
of masks and also their paired FFs (Line 2). Then a 2-to-1
MUX gate is inserted between the source cell and intermediate
cells (Line 4). The select input s determines which data input
(masked variable vm or random charge r) is presented to
the output. For proper implementations, one important issue
is that how to control the protection scheme. PATHFINDER
inserts a control unit that comprises a NAND gate and some
delay cells. It imports control signal ct close to the clock
source and outputs the short pulse signal s to the MUX gate.
This cell allows the random charge to be transmitted when s
remains logic high, otherwise transfers values of the source
cell. Figure 2 (b) demonstrates timing diagram of relevant
signals. Therefore, settings of the control signal and delay cells
have a strong impact on both security and performance, which
must satisfy the following conditions:

Tclk−ct + Tcomb + Tcd−s > Tclk−ck + Tc−q + Thold (3)

Tclk−ct + Tcd−s < Tclk−ck + Tc−q (4)

Tclk−ct + Tct−cd + Tcd−s > Tclk−ck + Tc−q (5)

Tclk−ct+Tct−cd+Tcd−s+Tcomb<Tclk−ck+Tcycle−Tsetup (6)
where Tcycle, Tsetup and Thold denote the clock period, setup
time and hold time, respectively. Types of Ta−b denote the
delay from signal a to signal b. Tcomb is the total delay of
combinational logic behind FF1. Equation (3) and Equation (4)
define the time range where the positive edge of the pulse
signal s arrives. If the positive edge arrives early, random
charges will deliver to the next level FFs, which results in
wrong results. In contrast, random charges do not take effect
on partial leaky paths when the positive edge arrives later.
While the arrival time of its negative edge is confined by
Equation (5) and Equation (6). It must guarantee that no
sampling errors occur when transferring values of source cells.
Also, we need to avoid setup time violations due to extra delay.
By solving the above equation, we determine the location
of ct and the number of delay cells. In turn, PATHFINDER
raises new timing demand to the placement and routing stage.
The tool updates the timing constraint, increasing the clock
uncertainty by |Tclk−ct + Tcd−s − Tclk−ck| delays.

Security Analysis. Considering sensitive variable per bit,
state transition v1 → v2 occurs before protection. After apply-
ing PATHFINDER, this transition turns into r → (v1 ⊕m) for
combinational logic, while (v1⊕m) → (v2⊕m) for sequential
logic. Since the mask m and charge r are uniformly random
at each cycle, PATHFINDER shuffles the state transition so that
obfuscates dynamic power. Moreover, due to state transitions,
logic cells create currents across metal wires and thus emit EM
emanations. Hence obfuscated state transitions also protect the
design from EM SCA attacks.

IV. EXPERIMENTAL RESULTS

In this section, we use a 128-bit AES circuit (denoted as
AES-128) to validate the efficacy of PATHFINDER on side-
channel protection. At first, simulation results are exploited
to evaluate the hardened AES-128 in ASIC implementation.
Next, we implement the hardened AES-128 using FPGA and
carry out actual measurements. Note that security evaluations
are performed by correlation analysis attacks (CPA/CEMA) in
both experiments.

A. PATHFINDER Configuration

We apply logic synthesis to implement the AES-128 design
using 180 nm CMOS technology. The post-synthesis netlist
consists of 10 modules and 10083 logic cells. Its supply
voltage and clock frequency are set as 1.8 V and 25 Mhz,
respectively. Then the design goes through placement and
routing to obtain the final physical layout. Meanwhile, the
required files of PATHFINDER are collected, including post-
layout netlist, delay information and parasitic data.

As described in Section III, PATHFINDER will identify
and obfuscate leaky paths to harden the AES-128 design.
Table I lists configuration parameters of PATHFINDER. During
dynamic correlation analysis, we obtain 1082 partial logic cells
under 1000 input stimuli and leakage criterion > 0.95. Total
2120 logic cells compose complete leaky paths after static
security checking. In path obfuscation, two pseudo-random
number generators (PRNG) are inserted to produce 32 random
masks and random charges respectively. PATHFINDER takes
about 18.54 min, 9.12 s and 0.13 s for the above three steps.

82

Fig. 3: (a) Correlation traces as a function of time points obtained from unprotected (top) and protected (bottom) design.
Correlation traces as a function of stimuli number obtained from (b) unprotected and (c) protected design.

TABLE I: PATHFINDER parameters for the Experiment

Input stimuli Leakage criterion Masks Charges
1000 0.95 32 32

B. Analysis of Simulated Results

To evaluate the security, we perform time-based power
simulations on post-layout netlists using the Primetime PX
tool. Total 100000 dynamic traces are collected for unprotected
and protected designs, respectively. Then CPA attacks are
carried out on the time periods where SubBytes operation
of first four bytes executes. In CPA attacks, the recovered
key with the maximum Pearson correlation coefficient ρmax

indicates the most possible correct hypothesis. When the
number of traces exceeds a certain value, the ρmax of the
correct hypothesis will always be greater than those of wrong
guesses. This certain value, often named as measurement to
disclosure (MTD), denotes the minimum traces to disclosure
the key. Both the above two metrics are used in this paper to
represent the resistance of designs against SCA attacks.

Figure 3 (a) shows trends over time of the maximum corre-
lation ρmax for all key candidates. For unprotected design, the
maximum correlation of the correct key approximates 0.391
(top sub-figure). Results indicate that its side-channel behav-
iors highly correlate with leakage models used by the attacker.
Hence the attacker recovers the correct key within 84 traces
(Figure 3 (b)). While for design equipped with PATHFINDER,
hardware protections reduce the maximum correlation to
0.018 (bottom sub-figure). This makes the correlation trace
of correct key submerge by those of wrong key candidates.
Therefore, the attacker does not steal the correct key even
with 100 K traces (Figure 3(c)). PATHFINDER provides at
least 1190× improvement in the perspective of power side-
channel resistance. Table II lists overheads of PATHFINDER.
After hardened by PATHFINDER, the AES-128 requires 10742
logic cells, resulting in an increase of 659 cells. Moreover,
PATHFINDER introduces extra 600 µW power, prompting the
power consumption to change from 13.3 mW to 13.9 mW.
The maximum clock frequency decreases from 45.5 Mhz
down to 44.1 Mhz.

C. Analysis of Actual Results

To demonstrate the effectiveness of PATHFINDER against
EM SCA attacks, we perform actual measurements on designs
deployed in the SAKURA-G platform. Since the PATHFINDER
is designed for ASIC chips, the post-synthesis netlists need to

 module DFFRHQX1 (Q, D, CK, RN);

 output reg Q;

 input D, CK, RN;

 always@(posedge CK or negedge RN)

 begin

 if (!RN)

 Q <= 1'b0;

 else

 Q <= D;

 end

 endmodule // DFFRHQX1

Functions // DFFRHQX1

0 x x

0

1

x

1

1

1

0

0

1

Q[n]

Q[n+1]CKDRN

Fig. 4: The functions and RTL module of DFFRHQX1.
be adjusted according to FPGA applications. Here we rewrite
underlying modules of every logic cells in the technology
library. Figure 4 illustrates this procedure using a logic cell
DFFRHQX1, involving its functions and rewritten RTL mod-
ule. During Xilinx FPGAs development, tools will compile and
implement post-synthesis netlists using fundamental elements,
such as LUTs, FFs, carry-chain logic and multiplexers. Also,
we use hardware primitives to achieve the same functions
as the control unit. In these processes, attributes like KEEP
and DONT TOUCH are set on added signals and modules to
prevent logic optimizations.

During silicon measurements, one RF-B LANGER probe is
placed on the vicinity of the SAKURA-G board to collect
EM traces. We adjust the probe location in advance till
the amplitude of EM traces in the oscilloscope reaches the
maximum. The fixed key and 100000 random input stimuli
are delivered to the AES-128 design for data encryption.
Total 800000 traces are recorded for the AES-128 design,
under 2.5 GSa/s sampling rate. Then we take the average
of 8 measurements (with the same input stimuli) aligned
in the time domain through elastic alignment as the final
data. Figure 5 demonstrates the CEMA attack results. In the
original AES-128, the correlation trace of the correct key
stands out compared to those of the wrong keys. After applying
PATHFINDER, the maximum correlation of the correct key
decreases from 0.19 to 0.02. Therefore, no information leakage
can be observed by the attacker. Meanwhile, the CEMA attack
recovers the correct key within 92 traces for the original design
(Figure 5 (b)). However, the same attack targeting the hardened
design does not recover the correct key even after 100 K EM
traces (Figure 5 (c)). It can be seen that the tool also improves
the EM side-channel resistance, with an increase of MTD at
least 1085×.

D. Comparison with Existing Works

Table II summarizes the comparison between our work
and existing methods, in terms of MTD improvement, area,

83

Fig. 5: (a) Correlation traces as a function of time points obtained from unprotected (top) and protected (bottom) design.
Correlation traces as a function of stimuli number obtained from (b) unprotected and (c) protected design.

TABLE II: Comparison with existing works.

Works MTD Improv. Overheads
Power EM Area Power Perf.

Moradi [2] 100× – 359 % 262 % 40a

Moradi [10] 10000× – 196 % – 20a

Yao [4] 4×b – 10 % – –
SLPSK [11] 107× – 0 % 0 % 0 %

KF [3] 16× – 31.9 % – 31.25 %
Singh [8] 4210× 136× 96.7 %c 32 % 10.4 %
Das [12] – 167× 23 % 49 % 0 %
Das [9] 125000× 83333× 36.7 % 49.8 % 0 %

This Work 1190×d 1085×d 6.53 % 4.51 % 3.1 %

– Data has not been reported, a Increase clock cycles, b Decrease the
maximum correlation, c Area overhead includes 1.9 nF load capacitor,
d Only 100 K traces are collected limited by experiment conditions.

power and performance overheads. Moradi et al. [2] design
the threshold implementation of the AES design, yielding an
improvement of 100× in MTD metric. However, the area
and power overheads increase by 3× and 2×, respectively.
Recently, they optimize the traditional method [10]. Yao et
al. [4] replace identified vulnerable cells with WDDL, reduc-
ing maximum correlation by 4× with a 10 % area increase.
SLPSK et al. [11] propose gate-sizing to improve MTD by
107× without overheads, but bring about increased difficulties
in chip fabrication. KF et al. [3] apply a 4-round Feistel
structure on leaky modules to obfuscate data. Results report
MTD improvement of 16× while sacrificing 31.9 % area and
31.25 % performance. Singh et al. [8] propose a security-
aware all-digital low-dropout (DLDO) regulator. This method
increases power and EM SCA resistance by 4210× and 136×,
respectively. However, the area overhead is about 100 % due
to the large load capacitor. The method proposed in [12] has
a 167× MTD improvement, with 1.23× area overhead and
1.5× power overhead. An enhanced version of their work can
be found in [9]. In our work, PATHFINDER raises the MTD by
1190× and 1085× against power and EM SCA attacks. This
hardware protection only incurs 6.53 %, 4.51 % and 3.1 %
overheads with respect to area, power and performance.

V. CONCLUSION

In this paper, we propose a novel EDA tool PATHFINDER
for automatic side-channel protection. This tool enables de-
signers to identify leaky paths by combining dynamic and
static procedures. Then well-designed hardware solutions such
as Boolean masking and random precharge are inserted to
protect the gate-level netlist. Simulations and actual measure-
ments are performed targeted at the hardened cryptographic

design. Experimental results verify that PATHFINDER can
enhance the side-channel resistance by at least 1000×, while
introducing slight impacts on the area, power and perfor-
mance.

ACKNOWLEDGMENTS

This work is supported in part by the National Key R&D
Program of China (Grant No. 2021YFB3100903), and in part
by the National Natural Science Foundation of China (Grant
No. 62004112).

REFERENCES

[1] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Annual
International Cryptology Conference. Springer, 1999, pp. 388–397.

[2] A. Moradi, A. Poschmann, S. Ling, C. Paar, and H. Wang, “Pushing
the limits: A very compact and a threshold implementation of AES,”
in Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2011, pp. 69–88.

[3] M. A. KF, V. Ganesan, R. Bodduna, and C. Rebeiro, “PARAM: A
microprocessor hardened for power side-channel attack resistance,” in
2020 IEEE International Symposium on Hardware Oriented Security
and Trust (HOST). IEEE, 2020, pp. 23–34.

[4] Y. Yao, T. Kathuria, B. Ege, and P. Schaumont, “Architecture correlation
analysis (ACA): identifying the source of side-channel leakage at gate-
level,” in 2020 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST). IEEE, 2020, pp. 188–196.

[5] M. He, J. Park, A. Nahiyan, A. Vassilev, Y. Jin, and M. Tehra-
nipoor, “RTL-PSC: Automated power side-channel leakage assessment
at register-transfer level,” in Proceedings of the 37th IEEE VLSI Test
Symposium (VTS). Monterey, CA, USA: IEEE, 2019, pp. 1–6.

[6] D. Sijacic, J. Balasch, B. Yang, S. Ghosh, and I. Verbauwhede, “Towards
efficient and automated side channel evaluations at design time,” Kalpa
Publications in Computing, pp. 16–31, 2018.

[7] X. Wang, W. Yueh, D. B. Roy, S. Narasimhan, Y. Zheng, S. Mukhopad-
hyay, D. Mukhopadhyay, and S. Bhunia, “Role of power grid in side
channel attack and power-grid-aware secure design,” in Proceedings of
the 50th Annual Design Automation Conference. ACM, 2013, p. 78.

[8] A. Singh, M. Kar, V. C. K. Chekuri, S. K. Mathew, A. Rajan, V. De,
and S. Mukhopadhyay, “Enhanced power and electromagnetic SCA
resistance of encryption engines via a security-aware integrated all-
digital ldo,” IEEE Journal of Solid-State Circuits, vol. 55, no. 2, pp.
478–493, 2019.

[9] D. Das, J. Danial, A. Golder, N. Modak, S. Maity, B. Chatterjee, D. Seo,
M. Chang, A. Varna, H. Krishnamurthy et al., “27.3 EM and power
SCA-resilient AES-256 in 65nm cmos through > 350× current-domain
signature attenuation,” in 2020 IEEE International Solid-State Circuits
Conference-(ISSCC). IEEE, 2020, pp. 424–426.

[10] A. R. Shahmirzadi and A. Moradi, “Re-consolidating first-order masking
schemes,” IACR Transactions on Cryptographic Hardware and Embed-
ded Systems, pp. 305–342, 2021.

[11] P. Slpsk, P. K. Vairam, C. Rebeiro, and V. Kamakoti, “Karna: A gate-
sizing based security aware EDA flow for improved power side-channel
attack protection,” in 2019 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE, 2019, pp. 1–8.

[12] D. Das, M. Nath, B. Chatterjee, S. Ghosh, and S. Sen, “STELLAR:
A generic EM side-channel attack protection through ground-up root-
cause analysis,” in 2019 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST). IEEE, 2019, pp. 11–20.

84

	MAIN MENU
	Go to Previous View
	Help
	Search
	Print
	Author Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

