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Abstract—Neural Network (NN) accelerators are currently
widely deployed in various security-crucial scenarios, including
image recognition, natural language processing and autonomous
vehicles. Due to economic and privacy concerns, the hardware
implementations of structures and designs inside NN accelerators
are usually inaccessible to the public. However, these accelerators
still tend to leak crucial information through Electromagnetic
(EM) side channels in addition to timing and power information.
In this paper, we propose an effective and efficient model stealing
attack against current popular large-scale NN accelerators de-
ployed on hardware platforms through side-channel information.
Specifically, the proposed attack approach contains two stages: 1)
Inferring the underlying network architecture through EM side-
channel information; 2) Estimating the parameters, especially
the weights, through a margin-based, adversarial active learning
method. The experimental results show that the proposed attack
approach can accurately recover the large-scale NN through EM
side-channel information leakages. Overall, our attack highlights
the importance of masking EM traces for large-scale NN accel-
erators in real-world applications.

I. INTRODUCTION

Neural Networks (NNs) have recently shown tremendous
progress in various real-world applications, ranging across
object recognition [1]-[3], natural language processing [4] and
autonomous vehicles [5], [6]. Additionally, there has been an
increasing effort to deploy large-scale NN models on dedicated
hardware platforms such as GPU, FPGAs, or customized
ASICs in order to improve the performance and efficiency of
data processing systems. Hardware vendors including Xilinx
and Intel spend great efforts collecting a data set, training these
NNs models on it, and developing the NNs accelerators, and
thus want to keep the trained models private and secret.

Howeyver, recent studies have demonstrated that severe vul-
nerabilities exist in hardware implementations of these NN ac-
celerators. An adversary, who has no knowledge of the details
of structures and designs inside these accelerators (i.e., black-
box), can effectively reverse engineer the neural networks by
leveraging various side-channel information, such as timing,
power and electromagnetic (EM) emanations. For example,
Hua et al. [7] infer the underlying network architecture and
parameters (e.g., weights) of NNs running hardware accel-
erators by observing the resulting off-chip memory accesses
while providing random inputs. Hong et al. [8] introduce a
new attack method, known as DeepRecon, which accurately
extracts the internal architecture of victim NNs by using the
cache side-channel technique. In addition, Duddu et al. [9]

also present that NNs are extremely susceptible to timing side-
channel attacks. In their attack scheme, adversaries recover
the layer’s depth by applying timing side-channel information
and exploit a reinforcement learning technique to search for
the best substitute model with functionality similar to the
victim networks. It is important to note that IP vendors do not
always allow users to access these architectural side-channel
information, such as memory and cache due to security and
privacy concerns. Therefore, these attacks can not be con-
ducted while targeting NNs protected in this way. To solve this
problem, Batina et al. [10] propose a new model theft attack
that exploits EM side-channel analysis to effectively reverse
engineer the network characteristics of small-scale multilayer
perception (MLP) and convolutional neural networks (CNNs).
Specifically, the authors perform correlation electromagnetic
analysis (CEMA) using the Hamming weight model to recover
the networks weights. However, uniform weight setting makes
current leakage models, i.e., Hamming weight and Hamming
distance, slightly deviate actual EM leakages [11]. Consid-
ering the enormous parameters (e.g., weights) those large-
scale neural network accelerators maintain, this deviation will
significantly degrade the effectiveness of EM based model
theft attacks.

To address these challenges, we present a new black-box
attack that exploits EM side-channel information to effectively
reverse engineer Binarized Neural Networks (BNNs), which
are commonly used NNs for IoT/edge devices that apply
binary values for activations and weights. Different from the
previous attacks, in this study we assume the adversary has no
access to the exact training data, network architecture, param-
eters, etc, but can only collect EM side-channel information
under inference operations and observe the networks outputs
(e.g, labels or confidence scores).

The key idea of our attack method is that we exploit EM
side-channel information to reconstruct the network archi-
tecture of the victim BNN accelerators, including the depth
and the types of layers (e.g., convolution layers, pooling
layers and fully-connected layers). In addition to the network
architecture, we also explore stealing the black-box model,
i.e., identifying the parameters, such as weights, of the victim
accelerators.

Although model stealing attacks will be extremely chal-
lenging when targeting recent popular BNN accelerators like
AlexNet [12], VGGNet [5] that contain millions of parameters,



researchers have already proved that it is still possible to
conduct accurate parameters extraction by applying a margin-
based, adversarial active learning method [13]. In this study,
we use a novel combination of these algorithms to accurately
estimate the large-scale parameters, which are currently the
bottleneck for stealing more complicated network acceler-
ators through EM side information leaks. Figure 3 shows
the overview of the proposed network theft attack targeting
current popular BNN accelerators. Specifically, the margin-
based, adversarial active learning algorithm proposed in [13]
is used for generating malicious examples to query the vic-
tim accelerators. By using the resulting input-output pairs
to retrain the substitute model with the extracted network
architecture from side-channel information, an attacker can
estimate the large-scale parameters (e.g., weights) of black-
box victim models more efficiently. The proposed method
will significantly reduce the computation overhead required
to obtain the EM information leaks from NN accelerator than
previous differential electromagnetic analysis (DEMA) based
NN model stealing attacks [10].

The main contributions of this paper are described as
follows:

o We demonstrate that attackers with no prior knowledge of
the victim BNN accelerators can accurately recover the
underlying model characteristics by exploiting EM side-
channel information leaks from hardware implementa-
tions. By applying simple EM analysis (SEMA), attackers
can develop the topology of the substitute models.

« We use a margin-based, adversarial active learning
method to generate malicious examples, which can easily
fool the substitute models to output incorrect classifica-
tion results. These crafted malicious examples are then
used to query the victim BNNs accelerators, which helps
attackers to acquire more decision boundary information
about the victim neural networks in the black-box setting.

« A black-box network extraction attack is designed in this
paper for estimating the large-scale parameters of victim
models and also accelerating the model theft process.

e« We evaluate the proposed model theft attacks on a
group of popular BNNs accelerators in real world. The
experimental results show that our attack approach can
successfully recover a substitute neural network with both
classification performance and layout architecture similar
to victim BNNs on the same hardware platforms.

The rest of this paper is organized as follows: Section II
discusses some relevant background on our work. Section III
presents the threat model of our attack. Section IV describes
our scheme of the model stealing attack. Section V presents
the experimental results and analysis. Section VI reviews the
related work. Section VII concludes the paper.

II. BACKGROUND

This section describes the details of BNNs as well as the
corresponding target hardware implementation.

A. Neural Networks

Neural Networks (NNs) consist of multiple layers of neu-
rons with complicated architectures and leverage such a deep
cascaded layer structure to capture the spatial and temporal
dependencies of data. The network characteristics of NNs
mainly includes two crucial aspects: (1) architecture, including
the number and types of layers, connection topology be-
tween layers, etc; (2) parameters, such as weights, filter size,
padding, etc. Currently, the most popular NNs such as LeNet
[14], AlexNet [12] and VGGNet [5] are composed of three
types of hidden layers for conducting various neural processing
such as convolution, pooling and fully connected. In these
networks, convolution layers extract feature maps from the
input data through the application of relevant filters (i.e.,
kernel-based filters), and then pooling layers perform global
average or max pooling on the resulting feature maps for a
spatial dimension reduction. Ultimately, the fully connected
layers with the same principle as the traditional multi-layer
perceptron (MLP) predict the class labels as well as their
confidence scores by computing weighted summations, adding
certain biases and applying non-linear activation functions.
Moreover, the associated parameters in each layer are statically
configured at the beginning and will be partly updated (e.g.,
weights) in the training stage of neural networks by using
gradient descent algorithm or its variants such as stochastic
gradient descent (SGD) algorithm.

B. BNNs

BNNs are the neural networks that use binary weights and
activation values. With binary values, BNNs can reduce the
memory requirement and computational complexity without
excessively sacrificing accuracy, and hence are well suitable
for power and resource constrained platforms. Various bi-
narization methodologies have been developed recently for
BNNs constructions [15]-[18]. Mathematically, the nonlinear
activation output y for the neuron of the fully BNNs can be
denoted as follows:

s
y=faD>_wizi +b) (1)
i=0
where f, is the activation function, S is the number of
synapses which are connected to each neuron in the current
layer, w; and b are weights and bias for the neuron, respec-
tively. Each hidden layer has a set of neurons, which are
connected to the neurons of the previous hidden layer and
serve as computational units to transform its input data into
representations using particular activation functions such as
sigmoid function, tanh function and Rectified Linear (ReLU)
function. In this paper, we consider the ReLU as the activation
function of victim BNNs due to the following advantages:
(a) Sparse activation; (b) Efficient computation; and (c) Better
gradient propagation.
In this study, the binarization of real-valued weights or
activations can be done using a simple sign function as
follows:



if x>0
otherwise

xp = sign(x) = { t} ()
where 1z, is the binary values. Consequently, the binary values
of weights or activations can be represented either +1 or —1
through Equation (2) and then be encoded with a 0 for —1
or 1 for +1 in order to perform an XNOR logical operation
on a bitwise level. In BNNs, the computations including
dot production and accumulation are reduced to these simple
XNOR bitwise operations, enabling faster execution times and
requiring less hardware resources. Therefore, the BNNs are
well-suitable for source constrained platforms such as edge
devices in IoT systems [19].

The BNNSs system involves two crucial phases: training and
inference. During the training process, the neural network is
trained on the dataset collected by the vendors or users. This
process partly updates the parameters through SGD algorithm
which exploits binarized weights and activations to compute
the parameters gradients. The pre-trained network can be
applied for the inference on the dedicated hardware platform.
During the inference, the network architecture and associated
parameters are statically configured and will be used to make
predictions on new inputs, e.g., for classification problems.

We build the hardware implementation of the BNNs infer-
ence by using a typical neural network accelerator architecture
as shown in Figure 1. Specifically, the victim BNNs accelerator
receives instructions from the CPU processor, reads inputs and
weights from off-chip DRAM, and finish the data transfer
between off-chip DRAM and on-chip RAM through direct
memory access (DMA) system. In BNNs accelerator, the
processor usually supports a popcount instruction that counts
the number of set bits in binary values for accumulation. After
accelerating the neural processing through matrix multiplica-
tions and accumulations in the processing element (PE) array,
the intermediate results of all layers such as output feature
maps would be stored on the on-chip memory. Since the entire
neural network is stored on the FPGA, previous model stealing
attacks through memory side-channel information leaks are
not applicable to on-chip BNNs [7]. The system controller
is considered here as a part of accelerator to monitor various
computation tasks among different components. By combining
the computation results of all layers such as convolution, pool-
ing and fully-connected layers, the BNN accelerator eventually
returns the class label and/or confidence score of each image
as classification outputs.

The adversary in our work targets this BNN model inference
phase and wants to extract a copy of the victim neural
networks by directly observing the hardware accelerator.

C. Adversarial Active Learning

Active learning (AL) aims to select a “useful” subset of
unlabeled data set (i.e., image pool) for effectively training
the classifier in the target domain by exploiting special sample
strategies such as random strategy, certainty strategy and
uncertainty strategy [20]-[24]. As a result, such a selection
process would greatly reduce the label efforts of human experts
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Figure 1: A typical BNNs inference accelerator

while simultaneously maximizing performance of the clas-
sifier. Unlike these traditional AL methods, new adversarial
attacks such as FeatureFool are proposed to generate the image
pool [13]. The key idea of the attack is that, compared to ran-
dom examples (i.e., legitimate examples), adversarial examples
would extract more information about decision boundary of
the victim accelerator, and hence help accelerate the network
parameter theft process. Specifically, the proposed model
stealing attack relies on the uncertainty strategy to choose
the most “informative” examples from the image pool and
then train the substitute network extracted by exploiting EM
side-channel information leakages. The malicious examples
annotated with black-box victim accelerator will be an ideal
data set to train the substitute network in order to effectively
steal a exact copy of the victim accelerator.

III. THREAT MODEL

In this work, we consider a victim neural network F, with

domain input X C R" and output ) C R™. The main goal
of the attacker is to accurately reverse engineer the large-scale
network architecture through EM side channel information.
Scenario. In this study we consider a BNN system as shown in
Figure 2. Both F,, and F; are neural networks which consist
of a sequence of various neural processing units, including
convolution, pooling and fully-connected layers. Here, we
consider a difficult case where the victim networks involve
different types of layers and large-scale parameters, e.g.,
weights. We further assume that the training phase of BNNs
is trusted but the BNNs accelerator is deployed on platforms
that are vulnerable to side-channel attacks.
Attacker’s capability. We assume that an attacker who targets
the victim BNNs has no knowledge of the details of the neural
networks, including the exact training set, architecture, param-
eters, etc. We are considering a black-box scenario. Moreover,
the internal operations and behaviors of the victim accelerator
cannot be directly observed and changed by inserting hardware
Trojan into neural computing frameworks. We also assume that
the victim accelerator under consideration does not include any
defense mechanisms against EM side-channel attacks. This is
a practical assumption since the threat of EM side channel
threats to large-scale neural network accelerators is still not
well-perceived.

Moreover, we assume that the adversary has a non-invasive
and passive access to the hardware device running a vic-
tim BNNs accelerator. Specifically, the only capabilities of
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Figure 2: Binary Neural Networks (BNNs) system. The goal of an adversary is to accurately recover an exact copy of the

victim network by directly observing the BNN accelerator.

an adversary are to control the inputs to accelerator, and
collect multiple EM side-channel measurements from a mi-
croprocessor to observe the input-output query behavior of
the victim accelerator. In the proposed attack scheme, the
adversary mainly focuses on exploiting the vulnerabilities in
the hardware implementations of integrated BNNs accelerators
to extract the networks characteristics, such as architecture and
parameters for Intellectual Property (IP) theft. Generally, this
would be an adversary motivated by economic incentives to
legally acquire a substitute network F;(z) of the secret victim
network F,(-) ~ F,(-) for future applications. As a result,
attackers can arbitrarily employ the substitute BNNs extracted
by the attack method on their dedicated hardware platforms,
i.e., IP theft.

IV. METHODOLOGY

This section presents our model theft attack which reverse
engineers the underlying BNNs accelerator’s characteristics,
such as network architecture and parameters, in the black-box
setting.

A. Architecture Extraction

We first discuss how an adversary can reverse engineer
the black-box victim accelerator through EM side-channel
analysis (SCA). SCA usually exploits the vulnerabilities on the
hardware implementations level to obtain crucial information
about the computations occurring inside an electronic device
[25], [26]. Our EM SCA attacks involve a target FPGAs-based
platform running BNNs classifiers, where the EM radiation is
collected by an adversary for network theft. We select ZYNQ
XC7000 SoC, which is included on the Pyng-Z1 board [27],
as the target FPGA chip.

Figure 4(a) shows the schematic of the FPGA based BNNs
system, containing programmable logic (PL), processing sys-
tem (PS) and AXI interconnect. Note that the BNNs bit-
stream is configured on the PL. component. The PS provides
instructions to configure and control the behaviors of the
BNNs. These instructions and data transactions are delivered
by the AXI interconnect. To obtain the configured bitstream,
the overall design is synthesized, mapped, placed and routed
to actual resources (cells and nets) of the FPGA layout as
shown in Figure 4(b). The yellow, green and blue blocks are
the occupied cells of PS, AXI interconnect and BNNs parts
respectively. The white lines in Figure 4(c) denote partial
nets of the BNNs parts. These cells, i.e., LUT, RAM, and

Registers, are configured to execute specific functions of
the BNNs system. The nets are applied for power routing
and signal routing. Dynamic current flows are generated due
to the charging and discharging of parasitic capacitance, as
characterized by

3)

where Iy, (t) denotes transient current flow, C; is the
capacitance of net 4, D;(t) is its transient transition rate, Vpp
is the voltage supply, and f. is the clock frequency [28].
Further, the EM radiations are emanated from these metal nets
carrying time-varying currents. Considering the multi-layer
structure of the FPGA chip shown in Figure 5, the magnetic
field B, along the z-axis is calculated at a point by Biot-Savart
law:

1
Liyn,i (t) = 507: -D; (t)-Vbp - fer

I _Adyni\Y) "l lz
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where (g is the magnetic permeability, /; is the length of net
i, r; is the distance from the middle of the net ¢ to the target
point. Hence, we can conclude that the EM field is proportional
to the number 7, transient transition rate D(¢) and capacitance
C of nets.

In the FPGA based BNNs system, the instructions transmit-
ted from the PS part are generally not continuous, resulting in
a discrete value of D(t) in the temporal domain. Therefore, its
EM field emanates in the form of discrete pulses. Nevertheless,
computations are executed consecutively in the inference phase
of the BNNs part. The D(t) of its nets is a continuous function.
So the EM emissions from this part are continuity curves in
the time domain. Similarly, we can illustrate the EM patterns
of each layer of BNNs.

As mentioned, the factor D(t) is related to the charac-
teristics of computations involved in each layer. Meanwhile,
previous works have validated that the parameters of a layer
directly determine the execution time of its sequential com-
putations [29]. Hence, the temporal behavior of each layer’s
factor D(t) is proportional to its own parameters which can
be described as follows.

B. (t) =

=

i€ nets

“4)

T (D; (t)) x P; ic¢€layers

&)

We illustrate a set of hyper-parameters that the adversary
needs to fully determine the entire network architecture in
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Table 1. The convolution layer within the BNNs accelerator
performs the non-linear operation by using the multiply-
accumulators computing weighted sums of their inputs. Given
the number of input channels d;,, and output channels d,,;, the
size of the output feature map wy.+ X Woyt, the size of the filter
kernel feony X feonv, the approximation number of parameters
P, of a convolution layer can be denoted as follows.

Pc - (wout)2 X dout X (fconv)2 X din (6)

Table I: Layer parameters of Neural Networks

Layer Parameter Definition

Win, Wout Width of the input/output feature map
din, dout Depth of the input/output feature map
P Indicator of pooling layer

Zin, Zout, Zf Size of the input/output filter

fconv 5 fpool

Sconwvs Spool

Width of the convolution/pooling filter

Stride of the convolution/pooling filter

Deonwvs Ppool Padding of the convolution/pooling layer

In this paper, max-pooling layers are applied to downsam-
ple the input feature map from previous hidden layers. The
approximation number of parameters of a max-pooling layer
depends on the size of the filter kernel, which can be denoted
as follows.

Pp = (fcom;)2 @)

Similar to MLP, fully-connected layers connect every neuron
in the neighboring layer to classify the input images. Typically,
these layers perform matrix multiplications between input
nodes m and output nodes n. Hence, the approximation
number of parameters of fully-connected layers can be denoted
as:

Pf=mxn (8)

Based on the above analysis, we can split the overall EM
trace and distinguish the depth and type of individual layers,
which is the basis of architecture reconstruction through EM
side-channel analysis. This relation can be simply denoted as:

T(B:(t): T(By(t): T (Bf(t)) =P.:P,: Py (9)

So far, we show that a few crucial network hyper-
parameters, including layer boundaries, depth, and types, can
be relatively easily revealed by an adversary through directly
observing the EM emissions pattern in the time domain.
However, not all network hyper-parameters can be accurately
recovered through EM side-channel information leaks. For
example, the layer dimensions, the width of input/output
feature map, and filter kernel sizes are also crucial information
for an adversary to rebuild a copy of the victim network. We il-
lustrate the relationship between the hyper-parameters for each



layer in Equations (10)-(18). Similar to [7], [30], we follow
Equations (10)-(18) to enumerate a small number of candidate
architectures by reasonably guessing these hyper-parameters
and then choosing the best architecture by comparing their
accuracy on the same test set. Moreover, since the parameter
p in Equation (13) is obtained by directly observing the timing
behavior of EM traces, our method can significantly reduce the
number of possible architectures.

Zin = (Win)” X din (10)

Zout = (Wout)? X dout (11)

zf = (fconv)2 X din X dout (12)

Win—Ffeonv+Pconv

—in—ccopvtblony 4 ] 4 ool — oo

Wopy = —SconvTPeony p Epp 1 = fpool) (13)

Spool X P + p
Sconv < fconv < w22n (14)
Spool S fpool S Win = f;onv +pcorw + 1 (]5)
Win — feonv + Peonv
Spool < fpoot < f Peonv 11 (16)
Sconv
Peonv < feonw a7)
Ppool < fpool (18)

The structure reverse engineering attack proposed in this
section is the basis of our model theft attack. The associated
parameters in each layer such as weights and biases can
be effectively inferred with the knowledge of the extracted
network architecture.

B. Parameter Estimation

In this section, we discuss how an adversary can reverse
engineer the victim network parameters through a combination
of some novel algorithms. Once the network architecture has
been extracted through EM side-channel information leakages,
our next step is to estimate the parameters, especially the
weights by leveraging the adversarial active learning algo-
rithm. We consider using the adversarial active strategy in
[13], known as FeatureFool, for BNNs models. FeatureFool
is proposed in [13] to obtain a perturbed 2’ = x + ¢ that lie
approximately on the global margin (i.e., decision boundary)
of target BNNs classifier. Given a source image z, a target
BNNSs classifier f(x) and the targeted label I, we use the triplet
loss as a new penalty term and rewrite the initial box-constraint
optimization problem in [31] as follows:

16, + a - Tossya (& + )
z+06€][0,1]

where « denotes the chosen coefficient which enables to
minimize all the loss terms simultaneously (similar to [13], we
apply L-BFGS algorithm to solve the optimization problem in
Equation (19)). The distance function || - ||, is the L, norm
which quantifies the similarity between two images in the 2-D

min
g (19)
s.t.

space. Given a feature vector x = (z1,...
|Ix||, can be described as follows:

n 1/p
1%, = (Z mz'p>

i=1

,Zn), the p-norm

(20)

Moreover, the triplet loss function lossy; («) in Equation (19)
can be denoted as:

lossfy (x) =max(||¢x (), dx (1)l —
oK (), bk (25)lp + M, 0)

where ¢x(.) is the feature vector at ki, layer of BNNs
classifier, M is the constant margin of the triplet loss. By
adjusting the parameter M, an adversary can control the
misclassification confidence score and thus effectively craft
those adversarial examples that lie on the global margin of
the target classifier.

For reference, we also consider other two representative
strategies for crafting useful data set to train the substitute
model, including Ramdom and FeatureAdversary [13]. The
Ramdom Strategy exploited in this paper can be viewed as an
extreme case where an adversary randomly samples a subset
of a few examples x from unlabeled data set D,, and queries a
black-box victim BNNSs accelerator F,,. For the FeatureAdver-
sary Strategy, we leverage the algorithm proposed in [32] to
minimize the L, norms distance between the internal feature
presentation of image pairs (source image x, target image x;)
of the victim classifier F,, and craft adversarial examples. Once
these special examples are generated using Ramdom Strategy
and FeatureAdversary Strategy, our next step is to query the
victim BNNs accelerator and acquire the predictions results,
e.g., labels or confidence score. The resulting image-prediction
pairs will be applied to train the substitute model whose
network architecture is extracted through EM side channel
information leakages.

2n

C. Evaluation Metric

Given the input x, the victim classifier F,, and the substitute
classifier F;, the Average Test Error (ATE) over the test set
D, can be calculated by:

ATE = Z

(z,y)€D:

d(Fo(x), Fs(x))

D] (22)
where d is the p-norm distance function, F,(z) and F,(x)
are ground-truth labels and estimated labels on the same test
set, respectively. In our experiment, a lower ATE implies that
an adversary can extract a copy JF (i.e., substitute classifier)
that closely matches the victim classifier F,, running in the
hardware accelerator.

V. EVALUATION

A. Experimental Setup

To evaluate the proposed model theft attack, we implement
two large-scale BNN classifiers on a low-cost Pyng-Z1 devel-
opment board (see Figure 6), including a 12-layer ConvNet



[33] and a more complex 23-layer VGGNet [5]. We also
perform case studies on other small-scale neural networks such
as LeNet [14] and AlexNet [12]'. We use Xilinx Vivado High-
level synthesis (HLS) to implement BNNs accelerators and
collect EM traces under inference operations to obtain crucial
information about the victim networks. The positioning system
comprising of three integrated stepper motors is exploited to
place the EM probe at the surface of the targeted FPGA chip
running BNN classifiers. In order to improve the signal-to-
noise ratio (SNR) of the EM signals, we select a set of near-
field probes (RF2 from LANGER) to measure EM traces and
then amplify these traces using a amplifier (PA303) up to
30dB magnification. Additionally, band pass frequency domain
filtering is used for the entire EM traces to isolate the signal
from noise [34].
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Figure 6: Pyng-Z1 side-channel characterization platform.

B. Side-channel based BNNs Recovery

1) Reverse Engineering Networks Architecture: The layer
topology, such as depth and types, are necessary to achieve bet-
ter classification accuracy. As such, they are crucial elements
for any neural network architecture reconstruction process. In
this work, we explore how an non-invasive attacker reverses
engineer the layer topology by exploiting EM side-channel
information and further recovers the whole network architec-
ture. Take the ConvNet as an example, we collect 10000 EM
traces from the FPGA chip and measure the timing behavior of
the hidden layers. Table II lists the average execution time for
each layer in ConvNet. We can see that different layers param-
eters configurations result in different processing times. For
instance, the pooling layer requires shorter execution time than
the convolution layer due to its computation simplicity. From
Table II we also observe that the first fully-connected layer
(FC1) requires the longest execution time since it performs
most of the sequential XNOR computations. The relationship
between parameters configurations and average execution time
is the basis of architecture extraction through side-channel
analysis. Specifically, an adversary can reverse engineer layer’s

'Note that we did not present detailed experimental results of LeNet and
AlexNet since their results are consistent with more complex neural network
model stealing.

depth and types by directly measuring the timing behavior of
the EM traces during the inference.
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Figure 7: Observing pattern and timing of ConvNet inference
- R/W indicates that BNNs system reads or writes memory
operations.

So far, we have shown that the distinct EM signatures
of accelerators can help an adversary to effectively extract
the depth and types of layers in the large-scale victim BNN
model. Table IV lists possible architecture configurations for
different networks. To fully reverse engineer the entire network
architecture, an adversary needs to determine other structural
parameters such as the size of convolution or pooling filters,
stride, etc. As shown in Figure 7, since the OS running on
the SoC induces vast amounts of noise while reading/writing
feature maps to the on-chip RAM, it is difficult for an
adversary to infer these parameters through directly observing
these noisy and imperfect EM traces. In order to address this
challenge, we try to “guess” these structural parameters based
on the following observations: (1) For the commonly used NNs
[5], [12], [14], [35]-[37], the filter size of convolution/pooling
layers are limited in a small set as shown in Table III.
Larger NNs are typically constructed based on these common
architecture using various learning algorithms such as transfer
learning [38]-[40], and hence have the same candidate set of
filter size. (2) The same convolution layers, pooling layers
or FC layers are usually reused for reducing the computation
complexity. In the proposed attack scheme, we assume that
the types of the hidden layers are identical and the size of
convolution/pooling filters are chosen from Table III. The
remaining parameters associated with networks architecture,
including stride and padding size, can be correspondingly
calculated by Equations (10)-(18). From Table IV, we can see
that the possible number of substitute model can be reduced
to 11 for ConvNet. In order to obtain the best architecture
configurations for ConvNet, we train substitute models with
different structures, which are extracted through EM side-
channel information. Figure 8 depicts the classification ac-
curacy of possible 11 candidates structure of ConvNet. The



Table II: Layers parameters configurations and average execution time for ConvNet - N/A indicates that there is no parameter.

Layer Convl Conv2 Pool Conv3 Conv4 Pool Conv5 Conv6 Pool FCl FC2 FC3
Number of parameters (Bits) 2367 135K N/A 270K 540K N/A IM 2.1IM N/A 7.3M 910K 9K
Average Execution Time (ms) 1.81 2.32 0.01 3.71 5.60 0.09 10.14 15.61 1.03 31.14 0.12 0.08

black-box ConvNet achieves 81.25% performance on the test
set. From Figure 8, we can see that the best structure (Conv11)
achieves 75.15% performance, which is 29.95% higher than
the worst one (Convl with 45.20%). This indicates that the
architecture selection is extremely important for an adversary
to reverse engineer the victim accelerator. In addition to
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Figure 9: Possible VGGNet Structures.

ConvNet, we also perform the proposed attack on a more
complex VGGNet model. Compared to ConvNet, VGGNet
increases the depth of the neural network up to 23 layers
by adding more convolution and pooling layers. We exploit
the EM side-channel information to infer the networks’ depth
and layers’ types and then reasonably guess the possible 17
networks structures. The classification accuracy of 17 possible

structures is shown in Figure 9. The black-box VGGNet
achieves 53.18% performance on the test set. From Figure
9, we can see that the substitute network with the structure
Conv17 achieves the best accuracy (48.35%) on the test set.

Table III: Possible convolution and max-pooling filter config-
urations

Filter Size
1x1, 3x3, 5x5, 7x7
2x2, 3x3

Layers
Convolution
Max-Pooling

Table IV: Possible architecture configurations for different
networks

Networks LeNet | AlexNet| ConvNet | VGGNet
# of layers 6 8 12 23
# of possible structures 5 7 11 17

2) Reverse Engineering Network Parameters: After the
recovery of the architecture, now we apply a combination
of few algorithms to estimate the parameters. With the ex-
tracted network architectures (Convll and Conv17), we start
to train the substitute models on a small amount of dataset.
Then we conduct experiments with three kinds of synthetic
dataset generated by Random (RM), FeatureAdversary (FA)
and FeatureFool (FF). In each training epoch, the transfer
learning technique was used to retrain original substitute
models on the synthetic datasets. As shown in Table V, we
can see that the substitute model (ConvNet3) with Convll
architecture achieves 69.20% accuracy with RM samples,
75.25% accuracy with FA samples and 80.40% accuracy with
FF samples, which is similar to the 81.25% accuracy achieved
by the black-box ConvNet. For the VGGNet, our substitute
model (VGGNet3) uses Conl7 as the network architecture
and obtains 96.90% performance of the black-box VGGNet
by using the FF training set. From Table V we can also
observe that a local substitute model trained by adversarial
examples always achieves higher accuracy than the model
trained by random samples which is consistent with the results
in [13]. Specifically, using the synthetic dataset generated by
the FF algorithm achieves the best classification performance
on the same test set, illustrating that the FF algorithm can
help an adversary more effectively reverse engineer the victim
accelerators parameters such as weights and biases.

VI. RELATED WORK

Model extraction attacks aim to effectively recover a exact
copy of a victim network F,,. To steal the functionality of the



Table V: Accuracy on test sets. RM = Random, FeatureAdver-
sary = FA, FeatureFool = FF.

Absolute | Relative to
Dataset Networks
Accuracy | Black-box
ConvNet 81.25% 100%
CIFAR ConvNetl (Convll, RM) 69.20% 85.17%
ConvNet2 (Convll, FA) 75.25% 92.62%
ConvNet3 (Convll, FF) 80.40% 98.95%
VGGNet 53.18% 100%
GTSRB VGGNetl (Convl7, RM) 39.26% 73.82%
VGGNet2 (Convl7, FA) 45.01% 84.64%
VGGNet3 (Convl7, FF) 51.53% 96.90%

black-box victim network F,,, an adversary retrains a substitute
network F; on the synthetic dataset S (i.e., Fs(x) ~ F,(x)),

For argrr}ilnﬁcE (F' (2, Fo(x)) : w € S}) (23)

where Lo denotes the loss function that can be optimized
using stochastic gradient descent (SGD) algorithm. Some
existing studies demonstrate that an adversary can extract the
neural networks’ structure and design even in a black-box
setting. For example, Papernot et al. [41] proposes to use
the synthetic datasets generated by an adversary to train a
local substitute model for the victim neural network. Since
then, several studies [13], [24], [42]-[47] extend their works to
design more effective synthetic datasets generation algorithms
in order to improve the effectiveness of training set. In these
attacks, a malicious entity aims to select the basic architecture
from the candidate’s model zoo as a substitute network, and
retrain that network on various synthetic datasets to steal the
model. Although these attacks have proved significant success,
they remain impractical for stealing more complicated neural
networks, especially in the case that the network architecture
of the victim model can not be previously included in the
candidates model zoo.

Recently, several works on network theft attacks demon-
strated that side-channel analysis can be exploited by an adver-
sary to disclose the details of structures and designs inside the
victim networks [7]-[10]. In these attacks, they demonstrate
that a certain hardware platform releases various side-channel
information, such as timing, power and electromagnetic (EM)
emanations, while performing computations. The adversary
uses this side-channel information to reverse engineer the
model characteristics, such as networks architecture and as-
sociated parameters. However, previous SCA based works
either require physical access to CNN accelerators to collect
side-channel information such as memory and power, or they
suffer from extreme computation overhead while targeting
complicated CNN accelerators which contain vast majority of
hidden layers and parameters. To address these challenges,
this paper proposes a more efficient black-box attack method
that can accurately recover the victim network characteristics
through a special combination of a few novel algorithms
including: EM side-channel analysis and adversarial active

learning. Specifically, a non-invasive and passive attacker ac-
curately extracts the victim network’s architecture by directly
measuring the EM side-channel information from hardware
accelerators.

VII. CONCLUSIONS

Neural networks (NNs) have been widely applied in real-
world situations. These NNs, however, tend to be vulnerable
to model theft attacks launched by an adversary even in black-
box scenarios. In this paper, we introduce a novel model
theft attack that extracts the network structure and designs
inside BNN accelerators through EM side-channel informa-
tion. The proposed attacks are borrow ideas mainly from
the side-channel security domain and query theory, and can
effectively disclose the details of the victim model, including
network architecture and associated parameters. In order to
properly evaluate the effectiveness of the proposed attacks,
we conduct experiments on multiple commonly used neural
networks, including LeNet, AlexNet, ConvNet and VGGNet.
Experimental results demonstrate that the proposed attacks are
more effective at stealing the large-scale NNs than previous
works. Since NNs architectures are similar, our attack can be
easily extended to other types of NNs such as recurrent neural
networks. In the future, we will mainly focus on designing
effective defense mechanisms against model stealing attacks,
and therefore enhance the robustness of NN accelerators.
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