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Abstract—Electromagnetic side-channel analysis (EM SCA)
attack is a serious threat to integrated circuits (ICs). In order
to detect vulnerabilities in time at the pre-silicon stage and to
improve the chip’s robustness to EM SCA attacks, several EM
simulation methods have emerged for EM side-channel leakage
evaluation. Although the simulated results are accurate, the chip
security evaluation in practice requires up to hundreds of millions
simulation traces, which imposes an unrealistic computational
and time overhead on these simulator-based methods.

In this paper, we develop a tool named EMSIM+. Different
from the general EM security evaluation process, EMSIM+
introduces machine learning (ML) to accelerate the simulation of
layout-level EM emanations. Based on the generative adversarial
network (GAN), a well-trained EMSIM+ model can accept
the cell current and power grid information of the chip and
rapidly predict the EM emanation of the chip surface. We apply
EMSIM+ to a series of representative cryptographic circuits
and compare the simulation results with the state-of-the-art EM
simulation method and silicon measurements. The experimental
results prove that EMSIM+ has high simulation accuracy and
achieves more than 242 times evaluation time reduction for 1 M
sample data.

Index Terms—CAD for Security, Side-Channel Analysis, Gen-
erative Adversarial Network

I. INTRODUCTION

Side-channel analysis (SCA) attack has long been a threat to
the information security and functional security of integrated
circuits (ICs) [1]. By collecting information such as electro-
magnetic (EM), power, and timing inadvertently released by
devices, SCA attack can steal information such as the key of
a cryptographic chip or the parameters of a neural network
(NN) model [2]. Given the above risks, it is often necessary
to evaluate the side-channel security of the chip before it is
put into use. However, security evaluation is only performed
after the chip is manufactured in common industrial practice.
Once a chip does not meet security standards, industry faces
high cost and time penalties incurred in redoing the entire
design cycle. As a result, it is highly desirable to consider side-
channel security evaluation prior to delivering the physical
design to the foundry, i.e., the pre-silicon stage, which will
enhance the flexibility to fix the design [3].

Among various side-channel information, EM emanations
originate from the current inside IC components and contains
a wealth of information in the spatial, temporal and frequency
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domains. Therefore, the EM SCA attack is considered as one
of the most threatening means of SCA attacks [4], [5]. In order
to perform EM security evaluation at the pre-silicon stage,
EM simulation at layout level is fast emerging as an attractive
option. By simulating an accurate EM map corresponding to
the chip layout, side-channel security vulnerabilities can be
quickly located in conjunction with SCA.

The topic of EM simulation for side-channel security eval-
uation has been explored in several papers. Li et al. con-
struct a global EM information simulation flow for predicting
information leakage from different processors in the design
phase for the first time, involving current flow simulation, chip
layout parasitic extraction and EM emanation calculation [6].
Nevertheless, the rapid growth in circuit size is also accom-
panied by a rapid growth in the size of the extracted parasitic
network. Meanwhile, the complexity of simulating device
models also grows exponentially, resulting in the simulation
time explosion. Further, various methods to simplify EM
simulation have been developed one after another. Lomne et
al. establish a simulation process at the layout-level. They
exploit Ansys RedHawk to simulate the transient currents of
power and ground networks for EM calculations and obtain
satisfactory results in terms of spatial and time resolutions [7].
To further accelerate the simulation flow, Kumar et al. perform
a multiple-abstraction-level circuit analysis to identify current
branches of critical cryptographic operations, with the help of
the parallel mechanism of Synopsys FineSim [8]. Among the
latest advances in EM simulation, Ma et al. address the tool
namely EMSim, which reduces the computational complex-
ities of layout-level EM simulations with parasitic network
reduction and device model approximation [9]. Compared to
traditional EM simulation methods, EMSim achieves a 32
times increase in efficiency and assists in locating EM leakage
areas while maintaining high accuracy.

The above methods are effective in balancing the efficiency
and accuracy of EM simulation, while assisting chip designers
to avoid the risk of side-channel leakage in a timely manner.
However, during evaluation, these methods all rely on simu-
lators to solve large-scale systems of nonlinear equations to
collect EM data. In security evaluation scenarios for high-
security level chips, the demand often extends to millions
or even hundreds of millions of EM traces [10]. As circuit
complexity and data volume increase, even EMSim tool need
to bear years of simulation overhead. Therefore, there is an
urgent need for further accelerate the EM side-channel secu-



rity evaluation method to solve the bottleneck of insufficient
scalability of the existing methods.

To optimize the pre-silicon EM evaluation process, we
propose a generative adversarial network (GAN) based op-
timization method for EM side-channel security evaluation
called EMSIM+1. GAN has the capacity to generate new
data with additional information from the original data and is
widely used for data prediction. This data prediction capability
can effectively assist in generating EM evaluation samples.
Figure 1 shows the difference between general flow and
EMSIM+ flow. In general flow, EM emanations used for
evaluation are obtained by general method. General method
means traditional EM simulation tools such as EMSim or
silicon measurements. In EMSIM+, a small set of sample pairs
from cell currents, power grids to EM traces are simulated or
collected by general method and then used as real data to train
the model. Finally, the trained EMSIM+ model accurately and
rapidly generates all the data needed for security evaluation,
which greatly accelerates the security evaluation.

Fig. 1: General method vs. EMSIM+ flow.

The main contributions of this paper are highlighted as
follows.

• We establish a fast GAN-based EM side-channel security
evaluation tool named EMSIM+. It introduces ML to the
EM security evaluation domain for the first time, allowing
security-oriented evaluation and design more efficiently.

• EMSIM+ uses well-engineered feature maps extracted
from the layout-level, which capture information about
the cell current and power grid that cause the source of
EM emanation. By using continuous time as one of the
conditions, EMSIM+ learns the EM variations in dynamic
time through an image-to-image translation manner.

• We apply EMSIM+ to a representative set of crypto-
graphic circuits and compared the results with the latest
EM simulation method, EMSim and the silicon-level
measurements. The experimental results demonstrate that
EMSIM+ has high simulation accuracy, and achieves
242 times evaluation time reduction for 1M sample data
compared to EMSim.

The rest of this paper is organized as follows. Section II
introduces the background about ML for electronic design

1Source code of the EMSIM+ is released to the public and can be found
at https://github.com/jinyier/EMSim.

automation (EDA) and the GAN family. Then, the details of
our proposed EMSIM+ are shown in Section III. Section V
and Section IV demonstrate the effectiveness of EMSIM+ on
EM security evaluation. Conclusions are drawn in Section VI.

II. BACKGROUND

A. ML-based Electronic Design Automation (EDA)

Due to the rapid evolution of semiconductor technology,
the exponential growth of ICs is putting forth greater de-
mands on circuit performance and security. Traditionally,
EDA or computer-aided design (CAD) tools rely on rule-
based and deterministic algorithms to solve these complex
tasks. However, the design and verification phases of ICs are
becoming increasingly challenging with traditional methods
alone as ICs complexity rises and the need for faster design
cycles. In recent years, by harnessing the power of data-driven
models, ML provides a fast and high-quality solution to the
above challenges. ML algorithms facilitate the extraction of
valuable insights from large datasets and aid in developing
both accurate and efficient predictive models.

Currently, the use of ML to optimize EDA tools covers
almost all stages of ICs’ design and achieves prediction results
that are comparable to those of traditional tools. Alawieh et al.
translate placement schemes and the connectivity information
as input images to speed up forecasting routing congestion
map for large-scale FPGA via a conditional generative ad-
versarial network (CGAN) [11]. Lu et al. propose a frame-
work named GAN-CTS to solve clock tree synthesis (CTS)
outcomes prediction and optimization problems by extracting
features from trail routing, flip flops and clock net [12].
Chhabria et al. utilize an encoder-decoder based CGAN to
perform thermal analysis and IR drop prediction based on
potential characteristics of power distribution and density [13].

The above ML-based analysis methods substitute the mul-
tistep, high-complexity solution process and demonstrate an
impressive ability to improve the efficiency of each sub-
task, even surpassing traditional methods. By training ML
algorithms to learn from data and optimize computational
processes, designers can drastically reduce the time and effort
required to design and verify ICs systems, promoting more
efficient and cost-effective designs.

B. Generative Adversarial Network (GAN) Family

GAN is a class of unsupervised ML generative models,
initially developed by Goodfellow et al. in 2014 [14], as
depicted in Figure 2. GAN unites two competing networks,
a generator G and a discriminator D, to generate high-quality
fake samples through an adversarial training process. More
concretely, G generates predicted data G(z) from a given
noise input z. D is used to distinguish the real data x from
the real-looking G(z). A mainstream G basically use an
encoder-decoder scheme, where the input is downsampled by
convolution layers in the encoder until a bottleneck layer. Then
this process is reversed by transpose convolution layers in the
decoder. D takes the form of a convolutional neural network
that performs similar functions to binary image classification.

https://github.com/jinyier/EMSim


During the training process, the competition in the game drives
both G and D to improve their skills and eventually reach a
Nash equilibrium. The final loss function is expressed as:

min
G

max
D

V (D,G) = Ex∼Pdata (x)[logD(x)]+

Ez∼Pz(z)[log(1−D(G(z)))]
(1)

where Pdata represents the real data distribution and Pz

represents the prior distribution for a given noise x.

Fig. 2: The structure of a generative adversarial network.

With the increase of application scenarios, a series of
models such as Conditional GAN (CGAN), Deep Convolu-
tion GAN (DCGAN), Wasserstein GAN (WGAN), etc. have
been proposed to expand the GAN family. In the field of
EM simulation, our goal is to reconstruct EM information
based on current and power supply information through GAN.
Therefore, the CGAN model, given its capacity for additional
sample inputs, is particularly suitable for this task, allowing
for the generation of more precise samples.

III. GAN BASED EMSIM+ FAMEWORK

The overview of the proposed GAN-based EMSIM+ is
shown in Figure 3, including training phase, prediction phase
and evaluation phase. During the training phase, we aim to
design and train a GAN for EM prediction. Specifically, the
generator G accepts three types of input features extracted
from the circuit, i.e., cell current maps, power grid maps and
time sequence. Then, both the EM maps predicted by G and
the real EM maps, together with the input maps of G, are
alternatively fed to the discriminator D for determination. The
determination results are further fed back to G to enhance
the quality of the predicted EM maps. During the prediction
phase, G is preserved and serves as an inference model for
EM prediction. The model can take the cell current maps and
power gird map of any circuit as input and predict the EM
maps that vary over a specific time sequence. Eventually, the
evaluation phase gives feedback on whether the circuit has
the risk of EM side-channel leakage. Here we focus on the
training phase.

A. Feature Extraction

Based on the theoretical model of EM emanation from ICs
in [9], the transient current data of logic cells and the topmost

power grid are the sources of EM emanation. Therefore, we
first extract the cell current and power grid information from
the database of the chip physical layout, and convert them
into feature maps, which are then combined as input features
to G. Next, EM data is extracted by general EM simulation or
measurement methods and mapped as real EM maps. Take a
chip with a size of w×h as an example, its surface is divided
into a matrix of grid tiles using a l×l square and represented as
a feature map with a dimension of m×n pixels, i.e., m = w/l,
n = h/l. EMSIM+ provides the ability for the user to select
the granularity of the EM simulation themselves by adjusting
l for any size chip.

1) cell current map: This feature contains the position
coordinates of each logic cell and the transient current Ii,
i = 1, 2, ......n, and n indicates the total number of logic cells
of the chip. As illustrated in Figure 4, space decomposition
divides cell current into any grid tiles (blue squares) occupied
by the cells (gray rectangles). Assuming a uniform distribution
of the current within grid tiles, the equivalent current of each
grid tile is equal to the sum of all internal logic cells’ current.
For cells that cover more than one grid tile, we consider
that it only contributes to the leftmost grid tile. Therefore,
the equivalent current of the middle grid tile in Figure 4 is
I2 + I3 + I5 + I7. The cell current map of size m × n × t
pixels is obtained by traversing all logical cells and adding the
transient current to the corresponding grid tiles, where t is the
length of the time sequence.

2) power grid map: This feature is generated by extracting
the location coordinates of the power pad as well as the power
supply metal wire. To express the equivalent resistance d of a
single supply path, we measure the Manhattan distance from
the center coordinates of the grid tile with a power supply
metal wire (x1, y1) to the center of a power pad in x- and
y-coordinates (x2, y2):

d = |x1 − x2|+ |y1 − y2| (2)

If power supply metal wires in a grid tile are connected
to N power pads, the equivalent resistance de is calculated
according to Equation 3.

d−1
e = d1 + d2 + . . .+ dN + C (3)

The constant term C is used to avoid the anomaly that the
denominator is zero. We iterate this procedure for all grid tiles
and complete the power grid map of size m × n × 1 pixels.
Intuitively, the density of the power network is also reflected
in the feature map.

3) real EM map: This feature reflects the EM distribution
over a specified height and time period. We produce real EM
maps of size m×n×t pixels for guiding EMSIM+ to generate
high-precision EM maps.

B. GAN Architecture Design

We select a model named pix2pix from the CGAN category
to convert the EM simulation of the chip into a paired image
translation problem. At the top level, it consists of a U-Net-
based generator and a PatchGAN-based discriminator.



Fig. 3: The proposed GAN-based EMSIM+ framework.

Fig. 4: Space decomposition of cell currents.

1) U-Net-based generator: In the context of EM prediction,
the generator’s role is to extract the features from the cell
current maps frame-by-frame and a power grid map before
converting them back to EM maps for all time steps. The
details of the generator’s structure are depicted in Figure 5.
Specifically, the encoder comprises convolutional layers paired
with max pooling layers that capture the essential high-
dimensional features of the cell current maps and power
grid map. The convolutional layer leverages varying numbers
and sizes of kernels within the sliding window to extract
local features of the input, using ReLU as the activation
function. The max pooling layer subsequently condenses the
dimensionality of these features by half. After down sampling
operations, the encoder obtains effective features in low di-
mensions. The subsequent fully connected layer flattens the
spatial features extracted by the encoder and fuses them with
the time sequence.

The decoder is created by transpose convolutional and
upsampling layers. By extending the dimension and depth
of the feature matrix, the decoder can restore fine-grained
information lost during the downsampling phase. A standard
solution is to use skip connections to fully guarantee the
comprehensive incorporation of the input information into
output information and predict the realistic EM maps. Skip
connections stack intermediate feature maps in the encoder
directly to the corresponding layers in the decoder through
concatenate layers, realizing the combination of global, tempo-
ral and location information. In this way, U-Net can accurately
describe the spatial EM distribution while alleviating the
gradient vanishing problem.

2) PatchGAN-based discriminator: The discriminator is
implemented by the PatchGAN structure as an image clas-

Fig. 5: The generator network of EMSIM+.

sifier to determine whether input EM maps are real or not.
PatchGAN divides the input map into multiple fixed-size grid
tiles and calculates the probability of each grid tile being true
individually. The average value of each grid tile is then used
as the output of the discriminator to assist the generator in
obtaining a higher quality EM map. It is important to note that
the discriminator contains considerably fewer parameters than
the generator. This is due to the fact that it solely depends on
the deep network for consistent abstraction and generalization.

C. Model Training

To increase the scalability of EMSIM+, the parameters
of our model are made adjustable and optional. The pixel
dimensions of input feature maps, simulation time points,
filter size, and even the dataset division can be adjusted
to cater to various situations. As a proof of concept, we
consider input and output feature maps with dimensions of
48× 48 pixels, with hyperparameters used for model training
are tabulated in Table I. The analysis period is assumed to
be 20 ns, represented as a time sequence of 20. Before the
training process, the dataset is split into 90% for training
and 10% for validation, respectively. The training dataset is
normalized to a range between 0 and 1. The EMSIM+ model
applies the Adam optimizer during the training process, and
the learning rate decays exponentially from 0.0005 with the
discount factor 0.98. We choose Mean Squared Error (MSE)
and Mean Absolute Error (MAE) for loss functions to yield the
most effective performance. The entire model is constructed
and tested in TensorFlow2.4. Both training and testing are



TABLE I: Hyperparameters of EMSIM+

Hyperparameter Encoder Decoder

Model layer
parameters

Conv2D
Conv2DTranspose

filter size 3×3 7×7
filter number 64 16

Conv2D
Conv2DTranspose

filter size 3×3 7×7
filter number 32 32

Conv2D
Conv2DTranspose

filter size 3×3 3×3
filter number 16 64

Conv2D
Conv2DTranspose

filter size – 3×3
filter number – 1

MaxPooling2D filter size 2×2 –

Training
Parameters

Epoch 100
Optimizer Adam
Loss function MSE, MAE
Decay rate 0.98
Decap steps 1000
Learning rate 0.0005

implemented on a 6-core CPU computer with an NVIDIA
GeForce RTX 3090 GPU.

D. Electromagnetic Security Evaluation

The goal of EMSIM+ is to accelerate the traditional EM
simulation process and predict EM data for EM leakage
evaluation of ICs. The detailed steps are as follows. Input
samples are provided to the generator of the well-trained
EMSIM+, depending on data volumes required for the se-
curity evaluation. These samples include cell current maps,
power grid maps, and time sequence. After that, the generator
translates input feature maps into EM maps. In this paper, we
carry out correlation EM analysis (CEMA) by traversing all
grid tiles on the chip surface to analyze the EM leakage at each
location of the chip, which assists in the security evaluation
of ICs.

IV. EMSIM+ VS THE LATEST METHOD

To assess the credibility and effectiveness of EMSIM+ as a
tool for evaluating EM side-channel security, we meticulously
choose 4 exemplary cryptographic circuits, encompassing a
range of cryptographic algorithms. Our experiments include
conventional cryptography algorithms, post-quantum encryp-
tion algorithm, processor with extended instructions, and
cryptography algorithm integrated with a protection scheme.
In the first part, we perform a comprehensive analysis by
comparing the simulation and evaluation results of EMSIM+
with those obtained using the latest EMSim tools, both in
terms of accuracy and efficiency. Notably, for this evaluation,
we employ the results obtained from EMSim as the ground
truth values, which serve as the reference data for training the
EMSIM+ model.

A. Experimental Setup

All 3 designs selected for this part are physically imple-
mented utilizing SMIC 180 nm CMOS technology and run
at a 25 MHz clock frequency and 1.8 V supply voltage. The
feature extraction and training process of the EMSIM+ model
have been thoroughly described Section III-A. The specific
details of the 3 designs are presented below.

1) Kyber: This circuit occupies 1160 µm×1160 µm and
implements the decryption function of the Crystals-Kyber

algorithm, whose input private key and cipher text are both 24-
bit. Kyber leverages shift registers to execute the Encode and
Decode functions, and two sets of butterfly units to implement
the Compress, Decompress, NTT, inverse NTT, and PWM
functions.

2) AES extension: This circuit occupies 900 µm×900 µm
and implements an Instruction Set Architecture (ISA) exten-
sion for AES algorithm acceleration based on a 32-bit in-order
AES extension processor architecture.

3) AES mask: This circuit occupies 1140 µm×840 µm,
whose implementation draws inspiration from the renowned
classical masking scheme proposed by Oswald et al. [15]. It
uses a combination of additive and multiplicative masks to
achieve a first-order SCA protection on the AES algorithm.

B. Accuracy Evaluation Metrics

To evaluate the accuracy of the proposed EMSIM+ in EM
prediction and leakage evaluation, we use Normalized Cross-
Correlation (NCC), Structural Similarity Index (SSIM) and
evaluation error as the metrics. Each metric is defined as
follows:

1) NCC reflects the accuracy of predicted EM data in
temporal domains. It is computed according to Equation 4,
where both the predicted EM data x, and the real EM data
y, are normalized to the range of [−1, 1]. These normalized
values are then represented by ∥x∥ and ∥y∥, each consisting
of T time points. The cross correlation coefficients between
∥x∥ and ∥y∥ for N input stimuli is calculated and averaged
to obtain the NCC result.

ncc =
1

N

N∑
i=1

∑T
t=1

(
∥x∥it − ∥x̄∥i

) (
∥y∥it − ∥y∥i

)√∑T
t=1 (∥x∥t − ∥x∥i)2

√∑T
t=1

(
∥y∥it − ∥y∥i

)2
(4)

2) SSIM plays a role in comparing the similarity between
the EM data x predicted by EMSIM+ and the real EM data
y in three dimensions: luminosity l, contrast c and structural
difference s. The calculation of these parameters is achieved
following the formulation in Equation 5.

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2

s(x, y) =
σxy + C3

σxσy + C3

(5)

where (µx, µy), (σx, σx) and σxy are the average, standard
deviation and covariance of x and y. C1, C2 and C3 are
constants to avoid zero denominators. Under the conditions
C3 = C2/2, the SSIM value is obtained by calculating the
product of l(x, y), c(x, y) and s(x, y) (see Equation 6).

ssim =
(2µXµY + C1) (2σXY + C2)

(µ2
X + µ2

Y + C1) (σ2
X + σ2

Y + C1)
(6)

3) Evaluation error is applied to evaluate the results of
the leakage evaluation. By exploiting evaluation error, we



can determine the correlation errors at information leakage
hotspots.

C. EM Security Evaluation Results

1) EM emanations: Figure 6 presents a graphical repre-
sentation of EM prediction results for the 3 designs at a
specific time point. The first and second rows display the EM
maps obtained through EMSim and the EM maps predicted
by EMSIM+, respectively. In addition, the third and fourth
rows exhibit the cell current maps and power grid maps used
in EM information prediction at the same time point. These
maps comprehensively contain the pertinent characteristics of
cell current and power grid, thus providing a comprehensive
and informative overview.

(a) Kyber (b) AES extension (c) AES mask

Fig. 6: EM map prediction results from EMSim and EMSIM+.

2) Security evaluation of Kyber and AES extension: CEMA
attacks are first executed on Kyber and AES extension cir-
cuits, both are not equipped with side-channel protection.
Despite using the Hamming distance (HD) value as the
information leakage model, the vulnerabilities within these
circuits manifest at distinct attack points. Specifically, Kyber
targets the output of the point-by-point multiplication, while
AES extension focuses on registers for byte substitution oper-
ations during the first round of encryption. The results of EM
data leakage analysis, generated by EMSim and EMSIM+ are
presented as leakage maps in the first and second rows of
Figure 7, respectively.

3) Security evaluation of AES mask: Next, we undertake
the prediction of 10 K EM traces to investigate the first-order

(a) Kyber (b) AES extension

Fig. 7: EM leakage evaluation results of EMSim (top) and
EMSIM+ (bottom) for Kyber and AES extension.

(a) (b)

Fig. 8: EM leakage evaluation results of AES mask with (a)
HW model and (b) toggle-count model.

security of the AES mask circuit against SCA. To accomplish
this, we construct the Hamming weight (HW) matrix as
an information leakage model by targeting the registers of
the S-Box module. CEMA is carried out on AES mask by
systematically traversing all grid tiles positioned on the chip
surface. Then, the correlation traces corresponding to key
candidates are calculated at the targeted leakage hotspot. The
result of the EM leakage evaluation is shown in Figure 8(a),
affirming the robustness of the mask scheme in preserving the
integrity of the correct key.

Further, we target the internal logic gates of the S-Box
module, performing EM leakage analysis by constructing a
toggle-count matrix as a leakage model. The result in Fig-
ure 8(b) demonstrates that 10 K traces are sufficient to reveal
the correct key. Therefore, EMSIM+ not only assist in the
diagnosis of potential security vulnerabilities in a circuit, but
also serves as a tool for evaluating the efficacy of protection
schemes.

4) Accuracy analysis: Table II shows the accuracy perfor-
mance of EMSIM+ for the above designs. It can be seen that
the NCC and SSIM metrics for EM prediction data exceed
99% with remarkable consistency. The performance evaluation
of the leakage maps under the SSIM metric attains a threshold
of over 95%, while maintaining an evaluation error of less
than 0.02. The experimental results prove the robust learning
ability of EMSIM+, which are on par with the well-established
EMSim in terms of EM simulation accuracy.



TABLE II: Accuracy Performance of EMSIM+

Design Kyber AES extension AES mask∗

NCC 99.5% 99.9% 99.9%
SSIM of EM map 99.3% 99.8% 99.5%

SSIM of EM leakage map 97.0% 96.7% 95.0%
Evaluation error 0.01 0.01 0.02

∗ Accuracy analysis of AES mask is calculated under the HW model.

D. Evaluation efficiency analysis

The accuracy of EMSIM+ has been demonstrated in above
evaluation results. To further measure the efficiency of EM-
SIM+ comprehensively, we use Equation 7 and Equation 8 to
calculate the time cost of both EMSim and EMSIM+ across
different data volumes.

t EMSim =
X

1000
(F + L) (7)

t EMSim+ = F + T +
X

1000
L (8)

X denotes the total amount of data to be evaluated. For
the circuits in the experiments, F , T and L represent the
time spent on feature extraction, model training and leakage
evaluation in minutes under 1 K data samples, respectively.

In Figure 9, we present the time cost analysis of EMSim
and EMSIM+ across different data volumes (ranging from 1 K
to 1 M traces) for various circuits. Notably, when dealing with
1 K traces, traditional EM simulation tool based on simulators
EM leakage detection can adequately handle EM leakage
evaluation. As the number of traces increases, the efficiency
gap between the two methods becomes increasingly promi-
nent. When the number of traces surpasses 10 K, EMSim’s
evaluation time extends to the scale of days, months, and even
years, whereas EMSIM+ exhibits clear advantages in terms of
efficiency. We introduce the ratio t EMSim/t EMSim+
to measure the efficiency improvement provided by EMSIM+
across different data volumes. Referring to the security level
standard in ISO/IEC 17825-2016, security level III requires
testing 10 K traces, EMSIM+ demonstrates an efficiency
improvement of about 9.22 ∼ 9.62 times compared to EMSim.
When upgraded to Security Levels IV, which requires 100 K
traces, the evaluation efficiency is boosted by 73.48 ∼ 86.05
times. And for 1 M traces, the evaluation efficiency is remark-
ably improved by 242.60 ∼ 419.35 times.

V. EMSIM+ VS SILICON MEASUREMENT

To further demonstrate the capability of EMSIM+ in ac-
curately simulating real chip EM emanation, we design and
fabricate a chip named AES-128. In the second part, we use
silicon measurements as ground truth to train the EMSIM+
model, enabling a comprehensive analysis of their results.

A. Experimental Setup

AES-128 implements the complete AES algorithm designed
in compliance with the NIST standard with 128-bit input
plaintext and key. The die area of the chip is 1.6 mm ×

Fig. 9: Evaluation time cost of EMSim and EMSIM+ for
different circuits under different number of traces.

1.3 mm, and the supply voltage and clock frequency are set
to 1.8V and 25 Mhz, respectively.

To conduct the post-silicon leakage analysis of AES-128,
we assemble an EM side-channel information acquisition plat-
form. As illustrated in Figure 10, this setup comprises a three-
axis positioning platform, ICR HH 250 -75 near-field probe,
oscilloscope and a PC. The three-axis positioning platform
precisely controls the probe to execute near-field scans of the
IC surface. The probe has a resolution of 150 µm and an
internal preamplifier to amplify the signal to +30 dB mag-
nification. During the measurement, 1 K random plaintexts
and a fixed key are loaded to AES-128 for encryption. The
collected signal is sampled at 2.5 GSa/s and averaged over 32
measurements as the final EM data. These EM maps, together
with cell current and power grid maps, serve as the dataset
for training the EMSIM+ model from scratch, employing the
parameters in Section III-C.

Fig. 10: The overview of the experimental setup.

B. EM Security Evaluation Results

1) EM emanations: As in Section IV-C, we chose a specific
time point to construct the EM maps of the AES-128 chip
surface. This time point corresponds to the clock cycle during
which AES-128 executes a SubByte operation, targeting the
first four bytes. The results of silicon measurements and



(a) Real EM map (b) Predicted EM map

Fig. 11: EM maps obtained by silicon measurements and
EMSIM+.

EMSIM+ are represented in Figure 11(a) and 11(b), respec-
tively. A remarkable consistency is observed in the distribution
and amplitude of the EM information acquired through both
silicon measurements and EMSIM+. The EM maps exhibit
high fidelity, with NCC and SSIM metrics reaching 99.5%
and 94.2%, respectively.

2) Security evaluation: We further evaluate the side-channel
security of the chip by performing the CEMA attack described
in Section III-D for each location on the chip surface. The
attack results at the hotspots are translated into the MtD
(measurement to disclosure) representation in Figure 12(a) and
12(b). For silicon measurements, MtD ≈ 173 and for EM-
SIM+, MtD ≈ 265. These experimental results validate the
effectiveness of the trained EMSIM+ in precisely simulating
the EM distribution of the real chip, leveraging layout-level
cell current and power grid information.

(a) (b)

Fig. 12: MtD results of EM leakage evaluation of AES-128
by (a) silicon measurements and (b) EMSIM+.

VI. DISCUSSION AND CONCLUSION

In this paper, we present EMSIM+, a complete framework
based on the GAN network for pre-silicon EM leakage detec-
tion of chips. EMSIM+ introduces ML into the EM security
evaluation field for the first time, which significantly accel-
erates the process of layout-level EM simulation and leakage
evaluation of large-scale ICs by learning transient mapping
from cell current data and power grid data to EM data.
The experimental results prove that EMSIM+ can accurately
predict the EM information and evaluate the side-channel
security. With 1 M traces, EMSIM+ has more than 242 times
efficiency improvement compared to the latest method. In ad-
dition, comparison experiments between EMSIM+ and silicon

measurements demonstrate that EMSIM+ can simulate real
EM information by learning the difference between simulation
and real measurements at post-silicon stage.
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