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Hardware Trojans (HTs) have become a major threat for the integrated circuit industry and supply chain and
have motivated numerous developments of HT detection schemes. Although the side-channel HT detection
approach is among the most promising solutions, most of the previous methods require a trusted golden chip
reference. Furthermore, detection accuracy is often influenced by environmental noise and process variations.
In this article, a novel electromagnetic (EM) side-channel fingerprinting-based HT detection method is pro-
posed. Different from previous methods, the proposed solution eliminates the requirement of a trusted golden
fabricated chip. Rather, only the genuine RTL code is required to generate the EM signatures as references. A
factor analysis method is utilized to extract the spectral features of the HT trigger’s EM radiation, and then a
k-means clustering method is applied for HT detection. Experimentation on two selected sets of Trust-Hub
benchmarks has been performed on FPGA platforms, and the results show that the proposed framework can
detect all dormant HTs with a high confidence level.
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1 INTRODUCTION

With an ever-growing need for cost reduction, globalization of the integrated circuit (IC) industry
and supply chain, authenticity, and security of the ICs are exposed to several threats. Hardware
Trojans (HTs) are malicious hardware modifications to ASICs, commercial-off-the-shelf (COTS)
parts, microprocessors, digital signal processors, reconfigurable architectures, or IoTs [19, 37]. HTs
have emerged as a major security concern for ICs that are employed in security-related situations,
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Fig. 1. A typical procedure of side-channel HT detection.

such as military, health care, aviation, communications, power management, and critical infras-
tructures.

After a decade of research efforts in this area, various HT detection and prevention methods
have been proposed. These methods cover all stages of the IC lifecycle and are implemented in
nearly all steps of the supply chain [28]. Compared with destructive methods, such as reverse en-
gineering, side-channel-based methods are more flexible and easy to implement, where I/O ports
and side-channel parameters are utilized to find abnormal behaviors. Although various HT detec-
tion approaches have been explored by many researchers, statistical side-channel analysis has been
among the most heavily investigated. Side-channel analysis is based on the fact that any hardware
modification that happens in a chip will impact side-channel information, such as power supply
transient signals [32], leakage currents [1], time-window-based supply currents [29], path-delay
analysis [2, 11], temperature [5], light [36], and electromagnetic (EM) radiation [3, 35].

For side-channel HT detection methods, there are several key steps, as shown in Figure 1. The
first step is collecting side-channel information during the runtime execution of chips. The side-
channel manifestations include but are not limited to power consumption, EM radiation, timing
differences, and so forth. Note that it is difficult to use side-channel-based methods for HT detec-
tion if the HTs are tiny and their influences are covered by random noise. Therefore, this step is
experiment dependent and based on the assumption that state-of-the-art measurement methods
are precise enough for collecting the side-channel signal differences introduced by HTs. The sec-
ond step is data preprocessing, including data integrating, denoising, and so forth. The purpose
of this step is to raise the signal-to-noise ratio (SNR) and maintain the features of the original
data. Process variations should be particularly considered because side-channel techniques suffer
from detection accuracy issues in the context of process variations. The third step is HT detection,
where various algorithms are leveraged. However, in the detection phase, most side-channel HT
detection methods rely heavily on the existence of a reference, which is typically a trusted golden
fabricated chip or other profiles alike, such as a golden layout. The absence of a reliable fabricated
golden chip or golden layout invalidates practical applications of the detection approaches. Fur-
thermore, many detection approaches require HTs to be activated, and works are trying to trigger
specific HTs through particular stimuli, such as activation generation [41] and test generation [17].
However, to best ensure the security of the circuits, HTs should be detected before activation, but
triggering an unknown HT is very difficult in real applications.

In this article, we propose a golden chip-free HT detection framework leveraging HT trigger’s
EM side-channel fingerprinting. We first build an EM side-channel radiation model (we refer to it
as the EM model in the rest of the article) to generate the circuit’s EM radiation using genuine RTL
design. Optimization is made considering noise and variations to make the simulated EM model
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match with real measurement in the frequency domain, and thus the EM model can be leveraged
to evaluate the side-channel information of the circuit under test. Then the side-channel data is
transformed into the frequency domain through Fast Fourier Transformation (FFT). Finally, to fully
leverage the EM spectral features, a factor analysis algorithm is utilized to extract the EM signa-
tures, then a k-means clustering algorithm is used for HT detection. Note that we do not require
the HT to be activated in the detection phase, and we do not specify the stimuli for the circuits.
The experiments are performed from two perspectives, where the EM modeling method is first
assessed and then the HT detection is demonstrated. Two selected sets of Trust-Hub benchmarks,
which are Advanced Encryption Standard (AES) and RSA benchmarks, are utilized for evaluation.
Experiment results prove that the HT detection framework has excellent ability in finding various
HT-infected circuits with a high confidence level.

Compared with previous works, this is one of the leading works in leveraging EM spectral fea-
tures for HT detection with no constraints on the HTs’ activation status, and further, the feasibility
and capability of the model are also improved. In the previous model [15], only certain input vec-
tors are simulated and the HTs are required to be activated for the effect of HT payloads to be
observed. In addition, the previous method relies on the distinct differences of side-channel infor-
mation introduced by activated HTs only. For the proposed model in this article, a large number of
random input vectors are applied during the simulation and modeling process to generate the sim-
ulated traces. Leveraging the simulated traces, a comprehensive trusted EM side-channel bundle
is obtained, and the corresponding details can be found in Section 3.1. The trusted bundle is more
applicable as a golden reference for real HT detection because the dependence on input vectors is
eliminated. Therefore, whichever input vectors are given to the chips under test, the trustworthi-
ness of chips can be validated with only a few measured EM radiation traces utilizing the proposed
model.

The main contributions of this work are as follows:

e A trusted EM model is established utilizing the RTL simulation data rather than perform-
ing extra simulations, and the generated EM signatures serve as the reference in EM side-
channel HT detection.

e The EM model is calibrated with the consideration of various interference to match with
actual measurements utilizing a non-linear regression function in the frequency domain.

e No specific knowledge of the HT’s activation is needed for detection. Utilizing state-of-the-
art testing and data processing techniques, potential dormant HTs are detected.

The rest of the article is organized as follows. Section 2 discusses different side-channel HT de-
tection methods and the relationship between HTs and EM radiation. The overall methodologies
for golden chip-free EM modeling and model calibration are proposed in Section 3. The HT detec-
tion algorithms are introduced in Section 4. The effectiveness of our method is validated through
experiments in Section 5. Finally, Section 6 presents the conclusions.

2 PRELIMINARIES
2.1 Attack Model

An HT can be inserted at many different stages of the IC lifecycle, including RTL, gate-level netlist,
layout, and so forth. For the in-house designed chips, we assume that only the RTL design is
trusted, and we have access to the trusted RTL code. We primarily focus on the detection of HTs
that are triggered by sequential logic, because even if the HTs’ payloads remain silent, the trigger
parts will still monitor the working status of the circuits and emanate EM radiation. Hence, HT
detection turns into the detection of abnormal or extra sequential logic through the EM features.
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Furthermore, we assume that the state-of-the-art measurement methods are precise enough for
collecting the side-channel signal differences introduced by HTs.

2.2 Side-Channel HT Detection Methods

Nearly all side-channel-based HT detection methods require a trusted golden chip or layout. It is of
the high cost to ensure whether a chip has been tampered with through reverse engineering anal-
ysis [4]. Several side-channel-based golden chip-free HT detection methods have been proposed
recently. In the work of Rad et al. [32], although a golden chip is not needed, an HT-free layout is
required to serve as the trusted model. In the work of Narasimhan et al. [29], the proposed method
avoids the need for a golden chip, but it requires a good understanding of the HT activation, which
is not applicable in real applications. A method without a “golden model” is presented in the work
of Liu et al. [24], where measurements and trusted simulation models are combined to generate a
trusted region. However, the requirement of a precise model of the process variations in the time
domain makes the technique difficult to implement. In the work of Lecomte et al. [21], an on-chip
detection method by monitoring the static distribution of the supply voltage over the IC’s surface
is proposed; however, the introduction of an array of sensors results in extra detection overhead. A
self-reference-based HT detection method is proposed by Xue and Ren [40], where a genuine chip
is not required; however, the circuit’s partitioning is limited by the number of power pads, which
will influence the detection accuracy. In the work of Zhang et al. [42], the golden-free detection
method exploiting the bit power consistency of processor is proposed, but this method requires
numerous power traces that are very time consuming to collect. Although the work of He et al.
[15] verifies the feasibility of simulated EM signals as a golden reference, this method requires con-
stant measurement until the HTs get activated. In real applications, if the circuit’s input changes
the EM radiation will also change, so this method is not feasible for real-time detection.

Another important part of the detection is data preprocessing. Raising SNR and reducing the
influence of process variations are the key goals in data preprocessing. Because process variations,
environment noise, and measurement noise all cause some misalignment, researchers have pro-
posed strategies to tackle this problem. In the work of Hou et al. [16], the intrinsic relationship
between transient current Ippr and quiescent current Ippg of different test vectors is exploited
to eliminate the effects of the process variations. A new approach that minimizes the effects of
process variations on delay via calibration using test structures is proposed by Cha and Gupta [8].
In the work of Chen et al. [9], a very detailed process variation modeling algorithm is discussed
for the proposed gate profiling technique for HT detection. In the work of Pino et al. [31], the ring
oscillators are utilized to measure the within-die (intra-die) process variations. The overall local
frequency varies +1.22% without HTs due to within-die variations on the whole FPGA, whereas
it varies up to approximately 8.77% due to the insertion of HTs. In [26], the process variations’
influence on ring oscillator-based physical unclonable function is studied. The results show an
average die-to-die (inter-die) Hamming distance of 47.13%, and an average within-die Hamming
distance of 0.86% at the normal operating condition. However, all of the current process varia-
tions research focuses on structure-assisted or contact-type HT detection methods such as timing,
leakage power, and gate profiling. Unlike other side-channel parameters, there is little research on
EM radiation, and there is even less research on process variations’ influence on EM side-channel
information.

As for HT detection algorithms, starting with the use of the Euclidean distance and Markov dis-
tance for HT detection, many research studies are trying to find the differences between different
side-channel data or trying to extract features. One-class support vector machines are used in the
work of Jap et al. [18], and they can detect very small HTs using EM side-channel data. Neural
network algorithms are utilized in the work of Li et al. [22] and Wang et al. [39] for extracting the
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features of the data. All of the neural network-based HT detection algorithms require a training
or learning process; however, it is unrealistic to predicate what the HTs should be like or to mimic
the variegated HT features. He et al. [13] proposed to train the neural network with simulated
genuine and HT-infected benchmarks. However, the proposed method may not be able to detect
potential unknown Trojans, and the influences of non-ideal factors are not properly handled. In
the work of Kulkarni et al. [20], an adaptive real-time HT detection framework is proposed using
machine learning algorithms, but the method requires feedback from the core information and
data packet. The ideal goal is that HT detection algorithms should be precise and self-improving,
and the algorithms should coordinate with the side-channel model to achieve the best detection
results. However, previous HT detection algorithms rarely consider the characteristics and compo-
sitions of the side-channel data when selecting HT detection algorithms. Chen et al. [10] leveraged
the clock tree embedded in the FPGA for HT detection, and the results validated that the proposed
framework is capable of detecting always on and already triggered HTs. Even with the help of
state-of-the-art HT detection algorithms, available measured data from HT-free and HT-infected
circuits are required to train a back propagation neural network, thus enabling the ability to distin-
guish HT-infected FPGAs from HT-free ones. However, it will still be very hard for the framework
proposed to detect potential HTs that are not included in the training phase.

2.3 EM Radiation of HT

EM radiation arises as a consequence of current flows within control, I/O, data processing, or
other parts inside a chip. The currents correlate with logical changes performed inside the chip,
and EM radiation contains abundant spatial information. Besides the currents inside the chip, EM
radiation is also influenced by several other parameters, such as the coupling between different
emissions, the design layout of the chip, and the position of the metering probe. However, for side-
channel-based HT detection, it is the direct near-field EM radiation from intended currents that
induce the signals that are captured by near-field EM probes. So once the chip is manufactured
and the experimental environment is set, the EM side-channel radiation is mainly determined by
the function of the chip.

The RTL code of design has been used for power consumption calculation utilizing existing
software like PrimeTime. Concerning the simulation of an IC’s EM radiation, a few works have
put forward some ideas using Hamming distance, Hamming weight, or an improved Hamming
distance model [27, 38]. In the same way, the RTL code can be used for estimating EM radiation.
He et al. used an RTL-based model for EM radiation simulation, and the generated L-traces can be
utilized for side-channel security analysis. No matter what the layout or packaging of the chip will
be, the signatures of EM radiation are determined by the function (i.e., the EM spectral features are
decided by the RTL code). Although other factors can influence the EM radiation captured by EM
probes, these factors cannot alter the EM spectral features. He et al. [15] proposed an EM modeling
method for matching real EM side-channel radiation using the RTL code, but the model only works
when the HTs are activated and the authors neglected the variations of the EM radiation caused
by different input vectors.

In real chips, current only flows when there are changes in logic states, and thus the EM radiation
carries information about the currents and hence the events and relevant states inside the chips.
Furthermore, when different input vectors are applied on the chip, the events and relevant states
will vary accordingly. HTs are modifications to original circuits, and HTs usually consist of trigger
parts and payload parts. The trigger parts are usually abnormal or extra sequential logic, which
typically has strong relations with clock signals, finite state machines, or state nodes in the original
circuits. The payload parts are responsible for conducting malicious functions. Again, our goal is
to detect the HTs before they are triggered. Even if the HTs’ trigger parts remain silent, they will
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still influence the currents that flow within the circuit, and thus they will affect the EM radiation of
the circuit. Further, the structural changes in the circuit, which are introduced by HTs, will cause
variations in leakage currents, which will also alter the EM radiation.

3 GOLDEN CHIP-FREE EM MODELING

In this section, we discuss the overall framework, working procedures, and algorithms included in
the modeling methodology. Specifically, multiple input vectors are applied in the modeling stage
to get the simulated EM radiation traces under different input vectors. To match the simulated
traces with real measurements, a non-linear regression algorithm is utilized to compensate for the
simulated traces toward real measurement.

3.1 RTL EM Model Construction

Based on Hamming distance, the simulated traces are modeled by the factors that contribute most
to the EM radiation, such as data transitions and drive capabilities, whereas factors that have low
impacts for direct radiations, like coupling effect, are ignored. Through optimum seeking of factors,
major parts of the radiation that are caused by signal transitions can be modeled. Note that for ASIC
implementations, more parameters, including the drive capabilities, interconnect capacitance, and
so forth, should be taken into consideration. In this procedure, there exist differences between the
simulated trace and the measured traces. We address this problem by transforming traces from
the time domain into the frequency domain and comparing particular frequency spots. However,
under different input vectors, the data transitions and driving capabilities also vary subsequently.
Therefore, a large number of random input vectors are utilized in the modeling process.

Taking the FPGA implementation for example, under the input vectors V,,, where m represents
the number of input vectors, the initial and final states of the i;j, register/LUT are denoted as P;
and Q;, respectively, and ¢ represents the moment of the transition as every clock rising/falling
edge. According to the linear relationship proposed by Brier et al. [7], the fan-out number of the
i;p, register or LUT can be denoted as D;, and then the simulated EM side-channel trace R(¢) can be
modeled as Equation (1), where @ denotes the exclusive OR operation. The simulation of the R(t)
is illustrated in Algorithm 1; please note that R(t) is not real side-channel radiation. Instead, R(t)
represents the chip’s side-channel behaviors [33], which can be utilized to provide EM signatures
as references for HT detection. Following the algorithm, the RTL implementations will first be
synthesized to extract static circuit information including the logic components and drive capabil-
ities. Under different stimuli, the RTL code is then simulated to collect dynamic information such
as the switching activities and logic states of internal signals. The switching activities within the
circuit will cause changes in register states. During each clock cycle, the states of signals under
evaluation and their drive capabilities are collected. With all of the information, the final output
(i.e., R()) is calculated. All results from Equation (1) are added up along the time axis to get the
simulated trace in the time domain with all fan-out numbers as their weights.

(1)

n
R(t) = ) Di X (Pi ® Q1)
i=1 Vi
The sequential HTs that are driven by the clock signal or its division are specifically considered.
If the original circuit is contaminated by HTs, the numbers of the registers and LUTs and their logic
states are changed, resulting in the changes of the values of i;, and n in Equation (1). HTs are also
connected with the original circuit, and HTs change the fan-out numbers of some registers and
LUTs, resulting in the changes of the value of D; in Equation (1). Further, the inserted HTs alter
the internal nodes of the original circuit, which leads to the alterations of the values, including
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ALGORITHM 1: R(t) simulation

Input:
1: RTLimp > Original circuit implementation.
2: Vin > Input vectors.
3t > Moment of the transition.
Output: R(t) > Simulated EM side-channel trace.

4: logiccomponents < RTLimyp;
: DriveCapabilities « logiccomponents;
: for Each t do
Listrogicstate < RTLimplvm(t)§
end for
: Pi, Qi Di « listpogicStates > HD model.
10: R(t) «— P;,Q;,D;.

initial states, final states, or both. Specifically, HTs cause changes in the values of P; and Q; in
Equation (1).

Equation (1) is only dedicated for EM radiation simulation under input vectors V,,,. Because
the input vectors have a major influence on the EM radiation, a large number of different input
vectors need to be applied in the simulation process to build a trusted EM radiation bundle for real
applications eliminating the input vector dependencies. The goal is to detect the HTs with very
few measured traces from chips under test whether the HTs are activated or not. The simulated
EM radiation bundle R(T) is shown in Equation (2), where T represents the total time points in
the simulation. The EM reference bundle in the time domain is obtained through Algorithm 2. The
T * m matrix is transformed into the frequency domain and later used as the golden reference for
HT detection.

R(ty) = él Dj1 X (Pi1 ® Qi1)

Vi

R(tz) = i Diz X (Piz @ Qi2)
R(T) = =

Vv, (2)

R(tm) = é Dim X (Pim @ Qim)

Vin Txm

3.2 Golden Chip-Free EM Side-Channel Model

The principal basis of golden chip-free HT detection methodologies is to find the differences be-
tween the simulated trace and the measured traces from chips under test. However, due to the
influence of process variations, measurement noise, and environmental noise, even chips without
HTs behave slightly differently concerning EM side-channel. Furthermore, with the shrinking fea-
ture size of ICs, process variation influence keeps increasing on the circuit’s power consumption
and EM radiation in the time domain. Thus, in the time domain, if the influence introduced by an
HT is masked by process variations, its detection will be interfered with. However, in the frequency
domain, the EM spectrum is largely determined by the clock signal and finite state machines, both
of which are insensitive to process variations.

Due to process variations and measurement noise, the actual EM side-channel radiation of a chip
E(t) is composed of E,,;, Eo, and E,, which are EM leakage of the original circuit, EM leakage
due to process variations, and EM leakage due to measurement noise, respectively. If an HT is
inserted into the original circuit, there will be an additional element Er, which is the HT’s EM
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ALGORITHM 2: Getting the trusted EM reference bundle

Input:
1: RTLyriginal > Original circuit description.
2: Vin > Circuit input vectors.
3: t > Moment of the transition.
Output: R(T) > The trusted EM radiation bundle.

4 RTLsynthesized — RTLoriginal;
5: for Each V,;, do
6: for Each t do

7 listregisters, listLyTs < RTLsynthesized:
8 Dim < t,Vin;

9 Pi, Qi « liStregisters(i), listrurs (i), t;

10: end for

11: R(tm) < Dim,Pim> Qims

12: end for

13: R(T) « R(tm).

side-channel information. The EM traces of an HT-infected chip are formulated as Equation (3).
The impact of the noise can be eliminated by denoising, and then the FFT operation can be applied
on Equation (3) to transform into the frequency domain.

—_— —> — - —-
E(t) = Eori +Epy +E, +Er (3)

Meanwhile, process variations will not change the frequency point distribution of the EM side-
channel spectrum. Let f(nAt),n =0,1,...,N — 1 denote the EM signal in the time domain. Its
frequency spectrum processed by FFT is written as Equation (4), where At and A f are the sampling
interval in the time domain and frequency domain, respectively.

N-1
F(kAf) = Z F(nAt)e " CTRANGAD g 1 N -1 (4)

n=0
According to the process variation model [26, 31], A f (nAt) ~ N(0, 0%), which is the effect of the
process variations in the time domain assumed normal. Hence, the corresponding EM spectrum
processed by FFT is modified as Equation (5). As shown, spectrum modifications 7 (kA f) caused
by the process variations are scattered into k frequency points. Therefore, only very small Gauss
noises are introduced into the frequency range for HT detection. Thus, the differences caused by
process variations in the amplitude of each frequency point should be very small compared with

the original amplitude.

N-1
F (kAf) + AF (kAf) = D [f(nAt) + Af (nAr)]e @rkANAD (5)

n=0
Before we go into the frequency domain for HT detection, we need to address the influences
caused by process variations. Unlike random noise, process variations’ effect on side-channel mea-
surement usually appears in a certain kind of pattern and can introduce much more obvious in-
fluences than noise. The golden chip-free EM side-channel model should be valid on different
FPGAs, and thus the die-to-die process variations should be specifically considered. Assume on a
wafer that there exist L X L different dies under test, which can be affected by process variations.
Then the L X L matrix y denotes the EM signals with the presence of process variations collected
from different dies. Discrete cosine transform is utilized [6] to build a relation between y and its
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frequency-domain response Y using the 2D discrete cosine transform, denoted in Equation (6),
where u,v = 0,...,L — 1. Note that our model solves the HT detection problem in the frequency
domain. If FFT is applied on the right side of Equation (6), then the process variations’ influences
can only cause small mismatches in the low-energy part in the EM spectrum and cannot alter the
frequency distribution of the spectrum.

L-1L-1 . 1

Y(u,v) = y(u,v) - cos[z (u + 5)
u=0 v=0 (6)
X cos

Theoretically, if FFT is applied on the simulated trace to get ¥ (R(t)), it will correlate well with
F (Eori), and they will have many identical frequency points, as shown in Equation (7).

F(E() = F (Eori) + F (Epo) + F (E7)
= 7j(Eori) + T(ET) (7)
= F(R(t)) + F (Er)

3.3 HT EM Model Construction

The signal in the time domain is R(t), and its corresponding expression in the frequency do-
main is S(w). According to Fourier transform, we have Equation (8), where o is its corresponding
frequency.

+00

S(w) = f R(H)e ! dt )

—00

The detailed composition of the ¥ (E,,;) signal captured by the probe includes the main clock
and its harmonics, whose frequency can be denoted as g1, g2, g3 - - * g4, respectively; some periodic
signals generated by the circuits, whose frequency can be denoted as fi, f2, f3 - - ]Sc, respectively;
and other unintended signals, denoted as Ui, Us, Us - - - U, respectively. Assuming a sequential
HT with signal transition frequency T; is inserted into the circuit, under the same circumstances
and after FFT, the EM signals captured by the probe can be formulated as Equation (9), where A;;,
Ajzi, Asj, Ay, and As denote the amplitude of each of the frequency components, respectively. Based
on the heuristic observations, HT trigger parts and HT payload parts are taken into consideration
in the model. A4S(jT;) and AsS(jT;) represent the contribution of the HT’s trigger and payload,
respectively. By decomposing the HTs into separate parts in our model, we can utilize the features
of the HT trigger parts to detect HTs from the golden EM model. Before the HT is triggered, the
trigger part A,S(jT;) will always consume power and emit EM radiation. Note that due to the
coupling effect of EM radiation, the insertion of HTs will potentially affect other circuit parts’ EM
radiation. The HT’s payload part A;S(jT;) will come in effect when the HT is activated.

f g
F(E®) =) AuS(if) + ) AuS(ig)
i=1 i=1
+ > AyiS(U)+AsS(TT:)+AsS(Ty)

i=1
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3.4 HT Trigger EM Radiation Analysis

Based on the established HT EM model, the HT trigger parts and payload parts are separated.
Before the payload parts are triggered, the trigger parts are always monitoring the working status
of the circuits under certain input vectors. As discussed in Section 3.1, due to the dependency be-
tween input vectors and circuit status, different input vectors have a strong impact on the state of
trigger parts and can further influence the EM radiation of the trigger parts. Once special status
accumulates to the predetermined triggering conditions, the HT will be activated and execute ma-
licious behaviors. However, the predetermined triggering conditions are not easy to reach, so the
impact of the HT payload part AsS(jT;) will be absent most of the time. Under these circumstances,
the differences of the EM radiation between HT-free and HT-infected EM spectra are caused by
the HT trigger part A4S(jT1), and thus the differences can be analyzed for HT detection.
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4 GOLDEN CHIP-FREE HT DETECTION

In this section, we discuss the algorithms used in HT detection. After the simulated EM traces and
the measured EM traces from FPGA implementations are available, the EM spectra are analyzed
to extract the features utilizing the factor analysis algorithm, then a k-means clustering algorithm
is used to determine whether the chips under test are HT infected or not.

4.1 Factor Analysis—Based Feature Extraction

Factor analysis is an efficient statistical analysis method, which utilizes several common factors
to construct enough information of original signals. The remaining specific factors after the de-
composition represent the differences among signals, and thus factor analysis is extended to HT
detection by comparing the differences of specific factors between the genuine circuit spectra and
HT circuit spectra. According to the theory of factor analysis, for the dormant HTs, Equation (9)
is rewritten as Equation (10) based on the factor model. F(E;(t)), F(E2(t)) - -+ F(E,(t)) denote the
n frequency spectra of simulated traces or measured traces, respectively. S(jf1) -+ S(iff), S(jg1)
-+ S(jfy), and S(jUy) - -+ S(jU,) are the common factors of the traces. Ail)S(jTl), AZZ)S(]'TZ) e
A S(JT,) are the specific factors of F(Ey(t)), F(Es(t)) - - - F(En(2)).

To ensure the stealthiness of HTs, an intelligent adversary chooses the rare switching or oc-
currence as the trigger conditions, and thus the HTs are extremely difficult to activate under the
excitation of random vectors. Due to the stealthy nature of the HTs, it will be very hard to directly
distinguish the differences introduced by HTs through common factors between genuine circuit
spectra and HT circuit spectra. However, except for common factors, there are still differences in-
troduced by the trigger parts of HTs that can be utilized for HT detection. The specific factors of
the HT trigger parts Ail)S(jTl), Af)S(sz) e Ain)S (jT,,) make it possible to identify the additional
EM radiation of HTs—for instance, the HT detection turns into the detection of abnormal or extra
sequential logic’s EM radiation.
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Fig. 2. The detection framework.

4.2 HT-Based k-Means Clustering

As mentioned, the HT problem is formulated as a two-class classification problem, and the clus-
tering algorithm is introduced to classify chips under test as genuine or HT-infected ones. The
k-means clustering algorithm is an unsupervised algorithm that is widely applied to various fields,
such as data mining, pattern recognition, and decision support [23]. k-Means clustering method
provides good fault tolerance because it uses the mean of samples as the centroid of each class and
achieves high classification accuracy because it evaluates the clustering quality iteratively accord-
ing to the cost function. The iteration is only finished until the cost function reaches the minimum
value. In addition, it does not require the knowledge of HTs” implementations, and thus k-means
clustering is suitable for identifying the existence of HTs. As we only have access to the trusted
RTL code and the EM model, the k-means clustering algorithm is utilized to detect chips under
test from a trusted golden reference. Any chip under test that has different spectral features is
considered to be HT infected. The data is divided into different clusters iteratively using the cost
function. The cost function f; is expressed in Equation (11). This iteration process is repeated un-
til the intra-cluster distance between data points of the same cluster is minimal and inter-cluster
distance between data points of the same cluster is maximized. Where y; is the centroid of a clus-

ter C;, C; is the jth sample of a given dataset y = {Aii)S(jT),Aff)S(jT) . ~A(ni)5(jT)}, and k is the

number of clusters.
k
fe=3 2 [APsum-ulf (1)
=L vaPs(T)ec;

To evaluate the detection results of k-means clustering analysis, there are four values [12]: true-
negative value (TN), false-positive value (FP), true-positive value (TP), and false-negative value
(EN). TN shows the number of genuine spectra identified to be genuine spectra, FP shows the
number of genuine spectra identified to be HT spectra mistakenly, TP shows the number of HT
spectra identified to be HT spectra, and FN shows the number of HT spectra identified to be
genuine spectra mistakenly. Further, there are a few more values to evaluate the detection and
classification results: the true positive rate, the true negative rate, the precision, and the accu-
racy. The true-positive rate is defined by TP/(TP+FN), and the true-negative rate is defined by
TN/(TN+FP). The precision, P, is defined by P = TP/(FP+TP). The accuracy, A, is defined by A =
(TP+TN)/(TP+FP+TN+EN).

5 EXPERIMENTATION

In this section, the proposed framework is evaluated by detecting potential HTs in fabricated chips
without a golden reference chip. The framework is demonstrated in Figure 2. The experimentation
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T

Fig. 3. Experiment setup.

is carried out in the following three steps. First, the performance of the EM radiation model is
assessed in the frequency domain and calibrations are made. Then the factor analysis algorithm is
utilized to extract signatures of the trusted EM reference bundle. Finally, the k-means clustering
is utilized for HT detection with measured traces from the implementations of benchmarks under
test.

5.1 Experimental Setup

The experiment platform is a SAKURA-G FPGA board specifically designed for research and de-
velopment on hardware security. Two Spartan FPGAs, the controller FPGA (Device: XC6SLX9-
2CSG225C), and the main FPGA (Device: XC6SLX75-2CSG484C) are integrated on the board.
Although both FPGAs are built on a proven 45-nm technology node, the proposed method can
be applied for HT detection on other FPGA boards with different technology nodes. The input
operands are provided by the controller FPGA to the main FPGA. The main FPGA runs operations
and will not be affected by other parts on the board. With the consideration that EM radiation
is easily affected by differences in place and route, the Pblock [25] technique is applied to con-
strain the circuits into certain regions of the FPGA. Further, the EM probe is utilized to cover the
whole Pblock part of the circuit’s configurations, and the position of the EM probe is fixed during
the whole experimentation to acquire EM radiations. After acquiring EM radiation by the probe,
the signals are amplified using a pre-amplifier up to +30-dB magnification. Then the signals are
captured and transferred to the host computer for further analysis. The experiment setup is shown
in Figure 3. In the experimentation, we evaluated two selected sets of the cryptography bench-
marks from Trust-Hub [34]. The benchmarks are a selected implementation of a 128-bit version of
the AES block cipher and a basic 128-bit version of the RSA block cipher. There is a wide variety
of implementations of HTs that attack the encryption circuits. The platform we utilized for data
processing and results calculation has 24 Intel Xeon CPUs (X5690 @ 347 GHz) and 128 GB of RAM,
and the OS is Red Hat Enterprise Linux Server release 5.6.

5.2 EM Model Assessment and Calibration

To validate the feasibility and consistency of the EM model with actual EM radiation, simulation
traces are compared with actually measured traces in the frequency domain. The AES benchmark
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Fig. 4. EM model verification in the frequency domain. (a) EM spectra of measured traces. (b) EM spectra
of simulated traces.

used in the experiment runs on 5-MHz frequency. Specifically, 50 simulated traces of the HT-free
AES circuit from the EM model are randomly picked and transformed into the frequency domain.
The HT-free AES circuit is configured on FPGA, then 50 measured traces are collected from the
circuit’s EM radiation and transformed into the frequency domain. As demonstrated in Figure 4,
Figure 4(a) is the EM spectra of actual measured EM traces, whereas Figure 4(b) is the EM spectra
of simulated EM traces. From results in the figures, there are several identical frequency points
(greater than 82%) in both actual and simulated spectra, and the points are aligned on the red
dashed line across the subfigures. The EM model matches with real implementations very well
in the low-frequency band. However, there are two frequency bands where two spectra have few
mismatches.

The first mismatch happens around 50 MHz in the actual spectra, where the amplitudes of fre-
quency points are higher than those of simulated spectra. The difference is caused by the on-board
external 48-MHz crystal oscillator that offers the clock signal for FPGA. However, as mentioned
earlier, in the proposed EM model, only the signals that drive the circuit are taken into considera-
tion. Hence, when experiments are carried out on the FPGA, measured traces are heavily affected
by the external crystal oscillator. The mismatches introduced by the external oscillator need to be
calibrated before real applications. A non-linear regression algorithm is utilized to compensate for

the simulated data toward the measured data. The relationship f : E—s”_n) = E_m—; of the measured
data between the simulated data is established. More specifically, in the field of non-linear regres-
sion, the radial basis function network can establish the best-fit relationship among the variables
with any given accuracy with enough neurons [30]. The frequency range selected in the calibra-
tion stage is 500 KHz ~ 50 MHz. After calibration, the overall correlation coefficient is greater than
98%, and the distribution of coefficient is illustrated in Figure 5. Note that all simulated EM spectra
are calibrated before using them as the golden reference.
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Fig. 5. Correlation coefficient after calibration.

Table 1. HT Detection Evaluation

AES RSA
Benchmarks . .
Origin T200 T1700 T1900 T2100 Overall Origin T100 T200 T300 Overall
Gate count 17,572 17,594 19,703 18,498 17,847 N/A 7,172 7,581 7,449 7,894 N/A
HT percentage (%) 0 0.12 1213  5.27 1.56 N/A 0 571 247 10.06 N/A
Precision (%) N/A 9337 93,55 9530 9533 98.59 N/A  71.18 7823 71.18 89.51
Accuracy (%) N/A 7997 8091 94.12 9444 8252 N/A  65.67 77.67 65.67 65.17

N/A, data not applicable.

The second mismatch is in the high-frequency band over 120 MHz, where the amplitudes of
simulated frequency points are higher. The reason is that the proposed EM simulation model cal-
culates all logic state changes, as mentioned in Section 3.1, within the circuits; however, some of
the logic state changes in the high-frequency band will not induce currents that contribute to EM
radiation in actual chips. However, the preceding mismatch frequency does not influence the ac-
curacy of HT detection, because the frequency points are concentrated in a high-frequency band,
which exceeds our frequency of interest (500 KHz ~ 50 MHz).

Overall, the actual spectra have more obvious variations than the simulated spectra, which are
caused by noise and variations in real experiments. Therefore, the data preprocessing processes,
such as denoising, are utilized to improve the performance of the proposed model. When measur-
ing traces through experiments, the traces are averaged using the oscilloscope to eliminate most
of the random noise. After the data is stored, further denoising is performed to achieve both noise
reduction and data feature preservation, such as transients and abrupt changes. In this work, a
wavelet transform is utilized to reduce noise and raise the SNR [15]. In addition, the normalization
of the simulated and measured data is performed for the k-means clustering algorithm.

5.3 HT Detection

In this section, the details utilizing the k-means clustering algorithm for HT detection are demon-
strated. The golden reference in the experiment is the EM spectra obtained through simulation
after the calibration process. The chips under test in the experiment include the FPGA implemen-
tations of the genuine AES, genuine RSA, AES-HT benchmarks, and RSA-HT benchmarks. A de-
tailed description of the benchmark circuits is demonstrated in Table 1. The genuine AES and RSA
are the same circuits used in the EM model for generating the golden reference. Four AES and three
RSA representative HT-infected benchmarks are chosen from Trust-Hub that perform malicious
functionality to compromise the integrity of the circuit. For the AES benchmarks, the genuine AES
represents the HT-free AES circuit, AES-T200 represents data-leak HTs through capacitance, AES-
T1700 represents data-leak HTs through an antenna, AES-T1900 represents denial-of-service-type
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Fig. 6. HT detection results on different benchmarks. (a) AES benchmark. (b) RSA benchmark.

HTs, and AES-T2100 represents combinational and sequential data-leak HTs. For the RSA bench-
marks, the genuine RSA represents the HT-free RSA circuit, RSA-T100 represents the data-leak
HTs through dedicated output, RSA-T200 represents the denial-of-service-type HTs, and RSA-T300
represents the data-leak HTs through the data bus. Most of the HTs are relevant to clock signals
of the HT-free circuit. For the HT-infected benchmarks, all HTs have sequential triggers.

Before the HT detection using the k-means clustering algorithm, the EM model is first evaluated
from the HT detection perspective, in which the HT detection framework should be able to recog-
nize the HT-free circuits. The golden reference EM spectra and measured original circuit spectra
are compared. The results are demonstrated as the first stripe in Figure 6(a) and (b). Used in the
evaluation phase are 1,000 measured spectra under random input vectors. It is clearly shown in
the results that the majority of the measured spectra are classified into the HT-free class.

In the HT detection phase, 1,000 traces are measured of the HT-infected benchmarks each un-
der random input vectors. Then the traces are transformed into the frequency domain for HT
detection. For the AES benchmarks, more than 90% of the AES-T1900 and AES-T2100 spectra are
classified into HT-infected class, meaning that the framework performs perfectly in finding these
HT-infected circuits. For the AES-T200 and AES-T1700, more than 60% of the spectra are classified
into the HT-infected class, and thus the results still provide a very high degree of confidence in
finding HT-infected circuits. The HT detection results on RSA benchmarks are similar. For the RSA-
T200 benchmark, more than 75% of the spectra are classified into the HT-infected class, whereas
RSA-T100 and RSA-T300 have more than 50% of the spectra classified into the HT-infected class.
Even though only 52.67% of the HTs are detected in RSA-T100 and RSA-T300 benchmarks, com-
pared with the original circuit, we can still tell that the circuit is highly suspicious for infection
with HTs. Note again that the HT detection results are achieved with no constraints on the HTs un-
der random input vectors. Although the HT detection results have a relatively high false-negative
rate, the framework performs well in the detection of HT-free original circuits with a high true-
negative rate. In addition, it is clearly illustrated that there is a gap between the percentage of the
detection results between the original benchmark and HT-infected benchmarks. From the overall
results discussed earlier, we can conclude that the golden chip-free HT detection framework can
distinguish whether the chips under test are the HT-infected circuit or not.

Table 1 also summarizes the specific detection results of various benchmarks. As shown, for
the AES benchmarks, the precision of detection reaches greater than 93%, proving that the
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framework has excellent ability in finding HT-infected circuits correctly. Meanwhile, the accu-
racy of the detection for overall types of HTs reaches 82.52%. Compared with the results in the
work of He et al. [13], the detection accuracy is slightly lower by 7.49%; however, the decrease
in detection accuracy is acceptable considering the different natures of these approaches. Please
note that the original AES circuit’s recognition rate is far higher than the results in the work of
He et al. [13], where the recognition rate is improved from only 80% to greater than 95.42%. In ad-
dition, the detection results on AES-T1900 and AES-T2100 in this work are better than the results
of He et al. [13]. Note that the detection results are also validated on RSA benchmarks. As for the
relationship between HT detection accuracy and HT area, there are no accordant connections. For
AES-T1700, the HT area is larger than AES-T200; however, the HT detection results are similar.
The reason for this observation is that the AES-T1700’s payload part is larger than the payload part
of AES-T200. For AES-T1900 and AES-T2100, the HT trigger parts introduced distinct spectra fea-
tures. The same conclusion can be applied to the RSA-T200 benchmark, where the HT trigger part
has more distinct features than that of RSA-T100 and RSA-T300. The overall detection results are
affirmative, as the detection results are achieved with no specific knowledge of the HTs, and the
input vectors are random. The limitation of the proposed HT detection framework lies in whether
the HT detection algorithm can distinguish the extra side-channel signatures introduced by HTs.

6 CONCLUSION AND FUTURE WORK

In this article, we proposed a simulation model utilizing the HT-free RTL code at the behavior
level to generate a trusted EM side-channel reference bundle. Then the simulated bundle was
used to compare with actual EM signals for model calibration and then HT detection leveraging a
k-means clustering algorithm. The proposed HT detection framework gets rid of the requirements
for a fabricated golden chip. The experimental results on FPGAs demonstrate that the HT detec-
tion framework can distinguish a genuine circuit from HT-infected circuits with high credibility
even without knowledge of the potential HTs under random input vectors. Even if the Pblock tech-
nique is utilized to constrain the circuits into certain regions, there still exist minor differences of
the configurations on FPGA, so for more precise localized EM measurements, this factor needs to
be particularly considered. Alternatively, the proposed golden chip-free HT detection framework
provides a very promising manner of HT detection. For future work, we plan to combine test gen-
eration methods with the framework to improve HT detection accuracy further and to validate the
detection framework on combinational or mixed-type HTs. As our HT detection method happens
in the frequency domain, the HT detection may be influenced by clock variance across multiple
ICs and more experiments on different ICs will be performed.
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