IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

9881

EMSIM+: Accelerating Electromagnetic Security
Evaluation With Generative Adversarial Network
and Transfer Learning

Ya Gao, Haocheng Ma"™, Qizhi Zhang™, Xintong Song, Yier Jin, Senior Member, IEEE, Jiaji He",
and Yigiang Zhao

Abstract— Electromagnetic side-channel analysis (EM SCA)
attack poses a serious threat to integrated circuits (ICs),
necessitating timely vulnerability detection before deployment
to enhance EM side-channel security. Various EM simula-
tion methods have emerged for analyzing EM side-channel
leakage, providing sufficiently accurate results. However, these
simulator-based methods still face two principal challenges in the
design process of high security chips. Firstly, the large volume of
measurement data required for a single security evaluation results
in substantial time overhead. Secondly, design iterations lead to
repetitive security evaluations, thus increasing the evaluation cost.
In this paper, we propose EMSIM+ which includes two efficient
and accurate layout-level EM side-channel leakage evaluation
frameworks named EMSIM+GAN and EMSIM+GAN+TL
to mitigate the above challenges, respectively. EMSIM+GAN
integrates a Generative Adversarial Network (GAN) model that
utilizes the chip’s cell current and power grid information to
predict EM emanations quickly. EMSIM+GAN+TL further
incorporates transfer learning (TL) within the framework, lever-
aging the experience of existing designs to reduce the training
datasets for new designs and achieve the target accuracy. We com-
pare the simulation results of EMSIM+ with the state-of-the-art
EM simulation tool, EMSIM as well as silicon measurements.
Experimental results not only prove the high efficiency and high
simulation accuracy of EMSIM+, but also verify its generaliza-
tion ability across different designs and technology nodes.

Index Terms— CAD for security, side-channel analysis, gener-
ative adversarial network, transfer learning.

I. INTRODUCTION
VER the past two decades, side-channel analysis (SCA)
Oattacks have posed a serious threat to the information
security of integrated circuits (ICs) [1]. Through the collection
and analysis of information inadvertently emitted by ICs, such
as electromagnetic (EM) emanations, power consumption, and
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timing deviations, SCA attacks can compromise the confiden-
tiality of targeted ICs, leading to the leakage of cryptographic
chip keys or neural network model parameters [2]. Given these
risks, it is necessary to assess the side-channel security of
ICs before deployment. Typically, security evaluations happen
after the chip fabrication. Failing to meet security standards
incurs expensive revision costs and delays time-to-market.
Therefore, it is highly desirable to implement side-channel
evaluations at the early design stage, allowing designers to
identify and modify security vulnerabilities with more flexi-
bility [3].

Among various side-channel information, EM emanations
originate from the current inside the ICs’ components and
contain a wealth of information in the spatial, temporal,
and frequency domains. Nowadays, EM SCA attacks have
emerged as one of the most destructive security threats [4],
[5]. In response, designers combine EM simulations with
SCA techniques to evaluate side-channel vulnerabilities of
ICs at the layout phase. To achieve this goal, many meth-
ods have been proposed to speed up EM simulations while
maintaining the high accuracy of simulated results. Li et al.
pioneered the EM simulation flow to predict global infor-
mation leakage from different processors during the layout
phase. This flow includes current flow simulation, layout
parasitic extraction, and EM emanation calculation [6]. Lomné
et al. advanced the EM simulation by modeling the transient
currents of power and ground networks, contributing to the
prediction of spatial information leakage [7]. As the scale of
ICs increases, the complexity of device models and parasitic
networks grows rapidly, leading to challenges such as time
explosion in EM simulations. To address these challenges,
there have been several tools and techniques proposed in the
literature. Kumar et al. mixed the gate-level and transistor-
level current simulations and only retained the current data
from the top-level power-delivery network. With the help of
Synopsys FineSim’s parallel mechanism, they accelerated the
computation of EM emanations [8]. Ma et al. developed the
tool, i.e., EMSIM, which reduces the computational complex-
ities through parasitic network reduction and device model
approximation [9]. Compared to traditional EM simulation
at the layout level, EMSIM achieves a ~ 32x increase in
efficiency while maintaining high accuracy.

When designing a high-security chip, two main challenges
persist in the practical application of existing EM simulations
for security evaluations. First, a single security evaluation
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often requires to collect more than hundreds of thousands
or even millions of traces, bringing a significant time
overhead on simulator-based methods. Taking EMSIM as
an example, the simulator solves large-scale systems of non-
linear equations to calculate EM data. The time cost of this
computation grows exponentially as the sample size increases.
When the EM data required for security evaluation reaches
around 100K, the simulation time for EMSIM will extend
to several months. Second, version iterations of a chip
during the design phase require designers to continu-
ally re-perform security evaluations to identify potential
security risks, which further imposes a heavy time
burden.

In recent years, machine learning (ML) has advanced into
fields such as Electronic Design Automation (EDA) and chip
manufacturability by providing fast and high-quality solutions
to time- or resource-intensive mathematical analysis and com-
putation processes. In this paper, we develop a framework
named EMSIM+,! including two ML-based frameworks,
EMSIM+GAN and EMSIM+GAN+TL, to address the chal-
lenges aforementioned in EM security evaluation, respectively.
Figure 1 illustrates the difference between the general flow
and EMSIM+ flow. In the general flow, EM emanations used
for evaluation are obtained through the general method. Here
we define general method as traditional EM simulation tools
like EMSIM or silicon measurements. EMSIM+GAN flow
contains a Generative Adversarial Network (GAN) model,
which is capable of generating new data with additional
information from the original data and is widely used for data
prediction tasks. EMSIM+GAN first gathers a small set of
sample pairs from the general method. These sample pairs
range from cell currents and power grids to EM traces and
serve as ground truth data to train the GAN model. By utilizing
the predictive power of GANs, EMSIM+GAN significantly
accelerates the generation of EM evaluation data, thus address-
ing the extensive time requirements identified in our first
challenge. EMSIM+GAN+TL incorporates transfer learning
(TL) into the EMSIM+GAN framework. TL minimizes the
necessity for large training datasets by applying previously
acquired knowledge. It is easy to quickly update models for
different design versions without having to be an Al expert,
thus effectively mitigating the time constraints associated with
security evaluations during design iterations, as outlined in our
second challenge.

The main contributions of this paper are highlighted as
follows.

o A fast layout-level EM side-channel security evaluation
framework, named EMSIM+, is developed and evaluated.
EMS1IM+ utilizes ML in EM security evaluation for the
first time. It contains two frameworks, EMSIM+GAN
and EMSIM+GAN+TL, facilitating more efficient and
security-focused evaluations of designs.

o The input feature maps of EMSIM+ are extracted from
the layout-level design, where the maps contain infor-
mation about the cell current and power grid that cause

Source code of the EMSIM+ is released to the public and can be found
at https://github.com/jinyier/EMSim
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the source of EM emanations. Using continuous time as
one of the conditions, EMSIM+GAN harnesses GANs’
image-to-image translation capability to learn EM varia-
tions over time.

o EMSIM+GAN+TL further incorporates a TL approach
to significantly reduce the training duration and data
volume by leveraging insights derived from other cir-
cuits. This strategy effectively bypasses the limitations
associated with specific designs or technology nodes,
substantially enhancing its versatility and adaptability
across diverse design spaces.

« We apply EMSIM+ to a representative set of cryp-
tographic circuits and compare the results with the
state-of-the-art EM simulation tool, EMSIM and sili-
con measurements. Experimental results demonstrate that
EMSIM+ maintains comparable accuracy to EMSIM. For
EM leakage evaluation under 1M sample data, EMSIM-+
improves the efficiency over ~ 242x compared to
EMSIMm.

The rest of this paper is organized as follows. Section II
introduces the background about ML for EDA, the GAN
family and TL. Then, the details of our proposed EMSIM+ are
shown in Section III. Section IV, Section V and Section VI
demonstrate the effectiveness of EMSIM+ on EM security
evaluation. Conclusions are drawn in Section VII.

II. BACKGROUND
A. ML-Based Electronic Design Automation (EDA)

Driven by Moore’s Law, the complexity and scale of ICs
are increasing rapidly, bringing significant challenges in terms
of circuit performance and security. Traditional EDA tools
typically rely on rule-based and deterministic algorithms to
complete IC designs. Due to the lack of knowledge accu-
mulation, these tools have to execute each task from scratch,
thus making it harder to meet the demands of escalating ICs’
complexity and the need for faster design cycles. In contrast,
ML algorithms are adept at extracting valuable insights from
large datasets and reusing them under relevant tasks. Benefit-
ing from data-driven models, ML offers a fast, high-quality
approach to these challenges.

Currently, the application of ML in optimizing EDA tools
extends to almost all stages of ICs’ design, yielding predic-
tions that rival the accuracy of traditional methods. Alawieh
et al. translated placement schemes and the connectivity
information as input images to speed up forecasting rout-
ing congestion map for large-scale FPGA via a Conditional
GAN (CGAN) [10]. Lu et al. proposed a framework named
GAN-CTS to solve clock tree synthesis (CTS) outcomes
prediction and optimization problems by extracting features
from trail routing, flip flops, and clock net [11]. Chhabria
et al. utilized an encoder-decoder-based CGAN to perform
thermal analysis and IR drop prediction based on poten-
tial characteristics of power distribution and density [12].
The above ML-based analysis methods replace the multi-
step, high-complexity solution processes and demonstrate an
impressive ability to improve the efficiency of each sub-task,
even surpassing traditional methods. With the help of ML,
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designers can dramatically reduce the time and effort required
to design and verify IC systems, promoting more efficient and
cost-effective designs.

B. Generative Adversarial Network (GAN) Family

GAN is a class of unsupervised ML generative models, ini-
tially developed by Goodfellow et al. in 2014 [13], as depicted
in Figure 2. GAN unites two competing networks, a generator
G and a discriminator D, to generate high-quality fake samples
through an adversarial training process. More concretely, G
generates predicted data G(z) from a given noise input z. D
is used to distinguish the real data x from the real-looking
G(z). A mainstream G uses an encoder-decoder scheme,
where the input is downsampled by convolution layers in
the encoder until a bottleneck layer. Then this process is
reversed by transposing convolution layers in the decoder. D is
a convolutional neural network that performs similar functions
to binary image classification. During the training process, the
competition in the game drives both G and D to improve their
skills and eventually reach a Nash equilibrium. The final loss
function is expressed as Equation (1):

rrganax V(D, G) = Ex~py,, (v)[log D(x)]

+ Ecnp,nllog(l = D(G(2))] (1)

where Py, represents the real data distribution and P,
represents the prior distribution for a given noise x.

With the increase of application scenarios, a series of
models such as Conditional GAN (CGAN), Deep Convolution
GAN (DCGAN), Wasserstein GAN (WGAN), etc. have been
proposed to expand the GAN family. In the field of EM
simulation, our goal is to reconstruct EM information based on
current and power grid information through GAN. Therefore,
the CGAN model is especially suitable for this task. It can
accept input feature maps with additional samples, allowing
for generating more precise samples.

C. Transfer Learning (TL)

Traditional ML algorithms typically work within the same
feature space or distribution. When the distribution changes,
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the performance of the well-trained model often decreases.
In that case, the model needs to be rebuilt with the new data
from the new domain. In contrast, TL can apply knowledge
from one or multiple source domains to a target domain.
It doesn’t need to train the new model from scratch, thus offer-
ing a more adaptable and robust approach [14]. By utilizing
knowledge acquired from diverse but related source tasks or
domains, TL will fine-tune the model to fit the target task [15],
[16]. The concept of TL involves two fundamental domains
and two tasks: the source domain (Dy) and the target domain
(Dy), as well as the source task (7) and the target task (73).
The basic assumption of TL is that when Dy # D; or Ty # T;,
the ‘knowledge’ derived from D;—encompassing data fea-
tures, model parameters, etc.—can assist the learning process
of T; within D;. Typical TL schemes such as Fine-tuning
usually freeze the initial layers of the model trained for Dy
and adjust the subsequent layers with data from D;. The initial
layers capture similar features between Dy and Dy, while the
subsequent layers serve as classifiers or regressors requiring
fine-tuning.

Due to the complexity of IC designs and manufacturing
processes, it is highly costly to obtain sufficient training data
with acceptable accuracy for ML-based EDA tools. This chal-
lenge becomes more serious due to the intensive exploration
of the design space and the continuous evolution of tech-
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nology process nodes. Therefore, it’s important to minimize
the need for expensive datasets and to accelerate the model
construction. Several studies have explored the effectiveness
of using TL for knowledge transfer across different process
nodes. For instance, Lin et al. proposed a TL-based resist
modeling framework for contact layers [17]. By transferring
common knowledge between old and new process nodes,
this framework reduced the quantity of data required from
the target lithography configuration. Similarly, Gai et al.
constructed a layout hotspot detection model with TL to
evaluate the reliability of ICs, which significantly reduced the
consumption cost required for wafer verification at different
process nodes [18].

In the context of EMSIM+, circuits with different functions
or technology process node implementations can be considered
as separate T;s in different D;s. Our approach suggests to
choose Fine-tuning. By freezing the discriminator using the
best pre-trained model from 7; and fine-tuning the generator
with data from Dy, the optimal performance of EMSIM+ is
achieved. In this way, researchers can avoid training models
from scratch repeatedly when facing frequent design changes
or process iterations. We believe that TL mitigates EMSIM+’s
dependence on specific designs or process nodes, further
improving the efficiency of EM security evaluations and allevi-
ating the time explosion challenge in traditional EM simulation
methods.

III. PROPOSED EMSIM+ FRAMEWORK

The overview of the proposed EMSIM+ is shown in
Figure 3, including the training phase, prediction phase,
and evaluation phase. For a design under evaluation,
EMSIM+GAN designs and trains a GAN model for EM
prediction during the training phase. Specifically, the generator
G accepts three types of input features extracted from the
circuit, which are cell current maps, power grid maps, and
time sequences. Then, both the EM maps predicted by G and
the real EM maps, together with the input maps of G, are
alternatively fed to the discriminator D for determination. The
determination results are further fed back to G to improve the
quality of predicted EM maps. During the prediction phase, G
is fixed and serves as an inference model for EM prediction.
By providing the inference model with cell current maps and
power grid maps, EM maps required for evaluation can be

Fake
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predicted. Eventually, the evaluation phase gives feedback on
whether the circuit has the risk of EM side-channel leakage.
For the modified design, i.e., a new design, we reevaluate
its security using EMSIM+GAN+TL. During the training
phase, D is frozen and G is fine-tuned by a limited dataset
to construct a new model, and the prediction and evaluation
phases are subsequently repeated. Here we focus on the details
of the feature extraction, architecture design, model training,
and EM security evaluation process in EMSIM+-.

A. Feature Extraction

Based on the theoretical model of EM emanations from ICs
in [9], the transient current data of logic cells and the topmost
power grid are the sources of EM emanations. Therefore,
we first extract the cell current and power grid information
from the database of the chip’s physical layout. We convert
them into feature maps and then combine them as input feature
maps for G. Next, EM data is extracted by general methods
and mapped as real EM maps. Take a chip with a size of w xh
as an example, its surface is divided into a matrix of grid tiles
using an / x [ square and represented as a feature map with a
dimension of m x n pixels, i.e., m = w/l, n = h/l. EMSIM+
provides the ability for the user to select the granularity of the
EM simulation themselves by adjusting / for any size chip.

1) Cell Current Map: This feature contains the position
coordinates of each logic cell and the transient current [;, i =
1,2,...... n, and n indicates the total number of logic cells
of the chip. As illustrated in Figure 4, space decomposition
divides cell current into any grid tiles (blue squares) occupied
by the cells (gray rectangles). Assuming a uniform distribution
of the current within grid tiles, the equivalent current of each
grid tile is equal to the sum of all internal logic cells’ current.
For cells that cover more than one grid tile, we consider
that it only contributes to the leftmost grid tile. Therefore,
the equivalent current of the middle grid tile in Figure 4 is
I, + I3 + Is + I7. The cell current map of size m x n x t
pixels is obtained by traversing all logical cells and adding
the transient current to the corresponding grid tiles, where ¢
is the length of the time sequence.

2) Power Grid Map: This feature is generated by extracting
the location coordinates of the power pad as well as the power
supply metal wire. To express the equivalent resistance d of a
single supply path, we measure the Manhattan distance from
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the center coordinates of the grid tile with a power supply
metal wire (x1, y;) to the center of a power pad in x- and
y-coordinates (x3, y2):

d = |x1 — x2| + |y1 — y2| @)

If power supply metal wires in a grid tile are connected
to N power pads, the equivalent resistance d, is calculated
according to Equation (3).

d'=di+dr+...+dy+C 3)

The constant term C is used to avoid the anomaly that the
denominator is zero. We iterate this procedure for all grid tiles
and complete the power grid map of size m x n x 1 pixels.
Intuitively, the density of the power network is also reflected
in the feature map.

3) Real EM Map: This feature reflects the EM distribution
over a specified height and time period. We produce real EM
maps of size m xn xt pixels for guiding EMSIM+- to generate
high-precision EM maps.

B. GAN Architecture Design

We select a model named pix2pix from the CGAN category
to convert the EM simulation of the chip into a paired image
translation problem. At the top level, it consists of a U-Net-
based generator and a PatchGAN-based discriminator.

1) U-Net-Based Generator: In the context of EM pre-
diction, the generator’s role is to extract the features from
the cell current maps frame-by-frame as well as a power
grid map before converting them to EM maps for all time
steps. The details of the generator’s structure are depicted
in Figure 5. Specifically, the encoder comprises convolutional
layers paired with max-pooling layers that capture the essential
high-dimensional features of the cell current maps and power
grid map. The convolutional layer leverages varying numbers
and sizes of kernels within the sliding window to extract
local features of the input, using ReLU as the activation
function. The max pooling layer subsequently condenses the
dimensionality of these features by half. After downsam-
pling operations, the encoder obtains effective features in low
dimensions. The subsequent fully connected layer flattens the
spatial features extracted by the encoder and fuses them with
the time sequence.

The decoder is created by transpose convolutional and
upsampling layers. By extending the dimension and depth
of the feature matrix, the decoder can restore fine-grained
information lost during the downsampling phase. A standard
solution is to use skip connections to fully guarantee the
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comprehensive incorporation of the input information into
output information and predict the realistic EM maps. Skip
connections stack intermediate feature maps in the encoder
directly to the corresponding layers in the decoder through
concatenate layers, realizing the combination of global, tempo-
ral and location information. In this way, U-Net can accurately
describe the spatial EM distribution while alleviating the
gradient vanishing problem.

2) PatchGAN-Based Discriminator: The discriminator is
implemented by the PatchGAN structure as an image classifier
to determine the realness of EM map inputs. PatchGAN
divides the input map into multiple fixed-size grid tiles and
calculates the probability of each grid tile being true indi-
vidually. The average value of each grid tile is then used
as the output of the discriminator to assist the generator in
obtaining a higher-quality EM map. It is important to note that
the discriminator contains considerably fewer parameters than
the generator. This is due to the fact that it solely depends on
the deep network for consistent abstraction and generalization.

C. Model Training

Figure 6 illustrates the training scheme for our proposed
EMSiM+. For T;, we choose EMSIM+GAN flow to train
a GAN model from scratch using the dataset from Dy.
The training parameters, such as pixel dimensions of input
feature maps, simulation time points, filter size, and even
the dataset division, can be adjusted to accommodate various
situations, enhancing the model’s scalability. For T;, we switch
to EMSIM+GAN++TL flow and use the fine-tuning method
introduced in Section II-C for TL. All the best pre-trained
parameters from the GAN model of 7 are initially shared with
the target GAN model. During the training phase, we freeze
the discriminator of the target GAN model by fixing its param-
eters. Subsequently, we fine-tune the generator’s parameters
using a small subset of training data from D; to achieve the
desired accuracy.

As a proof of concept, we consider input and output feature
maps with dimensions of 48 x 48 pixels, and hyperparameters
used for model training are tabulated in Table I. Note that
the model is trained based on pixel resolution, requiring
retraining for different resolution sizes. The model remains
suitable for various chip sizes as long as the resolution size
remains consistent. The analysis period is assumed to be
20 ns, represented as a time sequence of 20. Before the
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TABLE I
HYPERPARAMETERS OF EMSIM+
Hyperparameter Encoder | Decoder
Conv2D filter size 3%3 7x7
Conv2DTranspose | filter number 64 16
Conv2D filter size 3x3 7x7
Model laver Conv2DTranspose | filter number 32 32
a.rametgrs Conv2D filter size 3x3 3x3
p Conv2DTranspose | filter number 16 64
Conv2D filter size — 3x3
Conv2DTranspose | filter number - 1
MaxPooling2D filter size 2x2 -
Epoch 100
Optimizer Adam
Training Loss function MSE, MAE
Parameters | Decay rate 0.98
Decap steps 1000
Learning rate 0.0005

training process, the dataset is split into 90% for training
and 10% for validation, respectively. The training dataset is
normalized to a range between 0 and 1. The EMSIM+ model
applies the Adam optimizer during the training process and
the learning rate decays exponentially from 0.0005 with the
discount factor 0.98. We choose Mean Squared Error (MSE)
and Mean Absolute Error (MAE) for loss functions to yield
the most effective performance. The entire model is developed
and evaluated in TensorFlow2.4. Both training and testing are
implemented on a 6-core CPU computer with an NVIDIA
GeForce RTX 3090 GPU.

D. Electromagnetic Security Evaluation

The final step of EMSIM+ is EM security evaluation.
In the context of side-channel security evaluation, common
methods are mainly divided into two categories: attacking-
style evaluations such as Correlation Electromagnetic Analysis
(CEMA), and leakage detection-style evaluation, represented
by Test Vector Leakage Assessment (TVLA) [19], [20]. Given
that TVLA involves statistical analysis of random variables,
it is susceptible to get false positive or negative results.
Conversely, attacking-style evaluation is more suitable for
comprehensive analysis of cryptographic algorithms, which
facilitates vulnerability identification and the development of
protection schemes. Consequently, EMSIM+ uses CEMA for

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

security evaluation, utilizing Pearson’s correlation coefficient
and Minimum number of Traces to Disclosure (MtD) as
security metrics.

CEMA is a widely used SCA method that utilizes the
Pearson correlation between the real EM traces (matrix T)
and the hypothesized leakage model (matrix H) to screen
the true keys. Here the real EM traces are simulated through
EMSIiM+, the leakage model is constructed from the guessed
key and known plaintexts using the Hamming distance (HD)
or Hamming weight (HW) model. The correlation matrix R
is calculated as depicted in Equation (4).

R D hai —hi)-(taj—1))
i,j = - — .
\/Zdzl(hd,i —hi)? (g —1))?

where ¢t and & come from matrix 7 and H, respectively, and
d is usually a partial plaintext. Theoretically, the true key has
the highest correlation value r.

In the security evaluation, depending on the amount of data
required, we provide cell current maps, power grid maps,
and the time sequence to the generator of the well-trained
EMS1M+. The generator then translates input feature maps
into EM maps. We carry out CEMA by traversing all grid
tiles on the chip surface to analyze the EM leakage at each
location of the chip, which assists in the security evaluation
of ICs.

“4)

7

IV. EMSIM+GAN Vs THE LATEST METHOD

To validate that EMSIM+ enables accurate and fast EM
side-channel security evaluation, we choose 3 exemplary
cryptographic circuits for experiments, including various cryp-
tographic algorithms (conventional cryptographic algorithms,
post-quantum encryption algorithms, and a processor with
extended instructions). Here we perform a single security eval-
vation for different circuits, so we choose the EMSIM+GAN
flow. We comprehensively compare the evaluation results of
EMSIM+GAN with the state-of-the-art EMSIM tool in terms
of both accuracy and efficiency. In [9], the computational
results of EMSIM have been fully compared to post-silicon
measurements, demonstrating its high-precision EM simula-
tion capabilities. Therefore, in this section, we use the results
obtained by EMSIM as ground truth values to train the GAN
model of EMSiM+GAN.

A. Experimental Setup

Table II lists the key information used for feature extraction
in 3 selected experimental designs. Specifically, it includes the
area, the number of logical cells used to extract cell current
maps, and the number of top metal wires used to extract
the power grid maps. All designs are physically implemented
utilizing SMIC 180 nm CMOS technology and run at a
25 MHz clock frequency and 1.8 V supply voltage. The
specific details of the 3 designs are presented below.

1) AES: This circuit implements the complete AES
algorithm designed in compliance with the NIST standard with
128-bit input plaintext and key.
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TABLE I
DESIGNS USED IN EXPERIMENT I

Design Feature Area (um?) Logical cells | Top metal wires
AES 1140 x 840 14559 1424
Kyber 1160 x 1160 14598 587

AES_extension 900 x 900 11660 870

2) Kyber: This circuit implements the decryption function
of the Crystals-Kyber algorithm, whose input private key and
cipher text are both 24-bit. Kyber leverages shift registers to
execute the Encode and Decode functions, and two sets of
butterfly units to implement the Compress, Decompress, NTT,
inverse NTT, and PWM functions.

3) AES_extension: This circuit implements an Instruction
Set Architecture (ISA) extension for AES algorithm accel-
eration based on a 32-bit in-order AES_extension processor
architecture.

For the above designs, the process of feature extraction and
model training is described in Section III-A. We treat each
design as a T; and extract 1K sample pairs to train the GAN
model from scratch. In the evaluation phase, an additional 1K
pairs of cell current and power grid maps are produced, and the
trained GAN model is used to predict EM maps and perform
EM leakage evaluation.

B. Accuracy Evaluation Metrics

To evaluate the accuracy of the proposed EMSIM+ in
EM prediction and leakage evaluation, we use generator loss,
Normalized Cross-Correlation (NCC), Structural Similarity
Index (SSIM), and evaluation error as the metrics. Each metric
is defined as follows:

1) Generator Loss: reflects the performance of the gen-
erator and the quality of the generated samples. It consists
of two loss functions in the GAN model, MSE and MAE,
which are calculated as in Equation (5). The contribution of
MSE and MAE to Generator loss is balanced by assigning
weights 1 and 100. A reduction in the generator loss means
the generated samples are more realistic, thus meeting the task
requirements. Conversely, an increase may suggest a growing
difference between the generated and real samples, requiring
further adjustments to the generator parameters.

generator_loss = mse_loss + 100 x mae_loss  (5)

2) NCC: reflects the accuracy of the prediction data in the
time domain. It is computed according to Equation (6), where
both the predicted EM data x, and the real EM data y, are
normalized to the range of [—1, 1]. These normalized values
are then represented by ||x|| and ||y||, each consisting of T
time points. The cross-correlation coefficients between |x||
and ||y|| for N input stimuli are calculated and averaged to
obtain the NCC result.

J >z (bl =1E1°) Iyl =Nyl

NS /z,ll (||x||t—||x||f)2/z,il (vl =11yl)?
(6)

nce =

9887

3) SSIM: measures the accuracy of the prediction data
in spatial domain in terms of three dimensions: luminosity
[, contrast ¢ and structural difference s. The calculation of
these parameters is achieved following the formulation in
Equation (7).

2uxpy + Cy
T naa
X y
20,0y + C>
clv.y) = o2 +02+Cy
s(x,y) = Oy + G5 (7
Y= o0y + C3

where (ux, uy), (0x, ox) and oxy are the average, standard
deviation and covariance of x and y. C1, C2 and C3 are
constants to avoid zero denominators. Under the conditions
C3 = (C2/2, the SSIM value is obtained by calculating the
product of /(x,y), c(x,y) and s(x,y) (see Equation (8)).
A relatively large NCC and SSIM value indicates a high
similarity between EM maps, which will lead to a satisfactory
model prediction.

: Cpxpy + C1) 2oxy + C2)
ssim = — 3 3 3 (8)
(1% + 1y +C1) (ox +oy +C1)
4) Evaluation Error: is applied to evaluate the results of the
leakage evaluation. We can determine the correlation errors
at information leakage hotspots through evaluation errors.

Smaller evaluation errors mean higher accuracy for EMSIM+.

C. EM Security Evaluation Results

1) EM Emanations: Figure 7 visualizes EM prediction
results for the 3 designs at a specific time point in the form
of heat maps. Red color indicates higher values while blue
corresponds to lower values. The first and second rows depict
cell current maps and power grid maps extracted from the
layout level at the same time point, respectively. In EMSIM,
these maps are utilized to compute EM maps (third row of
Figure 7). While in EMSIM+GAN, these maps serve as
input feature maps for the generator to predict EM maps
(fourth row of Figure 7). The comparison reveals that EM
maps obtained from EMSIM and EMSIM+GAN have similar
amplitude ranges at each position of the layout.

2) Security Evaluation: We adopt the CEMA introduced
in Section III-D to perform EM security evaluation, thus
determining whether the generated EM traces can preserve
the key information leakage found in the original EM traces.
This will allow us to evaluate the accuracy of EMSIM+
and see if it has the potential to replace traditional EM
simulation tools such as EMSIM. Despite using the Hamming
distance (HD) value as the information leakage model, the
vulnerabilities in these circuits are located at different attack
points. Specifically, AES and AES_extension focus on regis-
ters for byte substitution operations during the first round of
encryption, while Kyber targets the output of the point-by-
point multiplication. The leakage analysis results obtained by
EMSIM and EMSIM+GAN are presented as leakage maps
in the first and second rows of Figure 8, respectively. These
results exhibit high similarity in terms of correlation hotspot
distributions and values.
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Fig. 8. EM leakage evaluation results of EMSIM (top) and EMSIM+GAN
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3) Accuracy Analysis: Table III shows the accuracy perfor-
mance of EMSIM+GAN for the above designs. The NCC
and SSIM metrics for EM prediction data exceed 99% with
remarkable consistency. The performance evaluation of the
leakage maps under the SSIM metric attains a threshold of
over 95%, while maintaining an evaluation error of less than
0.02. Experimental results show that EMSIM+GAN can be
used as a highly accurate leakage evaluation tool to identify
security vulnerabilities.

D. Evaluation Efficiency Analysis

To further measure the efficiency of EMSIM+ comprehen-
sively, we use Equation (9) and (10) to calculate the time
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TABLE III
ACCURACY PERFORMANCE OF EMSIM+GAN

Metric Design AES Kyber AES_extension
Generator loss 5.7996e-04 | 2.7735e-04 9.0921e-04
NCC 99.2% 99.5% 99.9%
SSIM of EM map 99.6% 99.3% 99.8%
SSIM of EM leakage map 95.1% 97.0% 96.7%
Evaluation error 0.02 0.01 0.01
10" [=EMsim AR Ul F=Tvs e [ [ pvrens o
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Fig. 9. Efficiency comparison between EMSIM and EMSIM+GAN across
different circuits and number of traces.

cost of both EMSIM and EMSIM+GAN across different data
volumes.

X
t im=——(F + L 9
EMSim IOOO( +1L) 9
X
tEMsimyGan = F +T + mL (10)

X denotes the total samples for evaluation. F, T and L
represent the time spent on feature extraction, model training
and leakage evaluation in minutes under 1 K data samples,
respectively.

Figure 9 shows the execution times in minutes of EMSIM
and EMSIM+GAN for different circuits and data volumes
(ranging from 1 K to 1 M traces) using bar charts. Addition-
ally, the efficiency promotion value of EMSIM+GAN is quan-
tified using the time ratio T_ratio = tEyMSim/tEMSim+GAN»
which is depicted in Figure 9 via a broken line. Obviously,
when dealing with 1 K traces, traditional EM simulation
tool based on simulators can adequately handle EM security
evaluation. As the number of traces increases, the efficiency
gap between the two methods becomes increasingly promi-
nent. Beyond 10 K traces, EMSIM’s evaluation time extends
to the scale of days, months, and even years, whereas
EMSIM+GAN exhibits clear advantages in terms of effi-
ciency. Referring to the security level standard in ISO/IEC
17825-2016, Security Level III requires testing 10 K traces,
EMSIM+GAN demonstrates an efficiency improvement of
about 9.22 ~ 9.62 times compared to EMSIM. When
upgraded to Security Level IV, which requires 100 K traces,
the evaluation efficiency is boosted by 73.48 ~ 86.05 times.
Moreover, for 1 M traces, the evaluation efficiency is remark-
ably improved by 242.60 ~ 419.35 times.

V. EMSIM+GAN Vs SILICON MEASUREMENT

To further demonstrate the capability of EMSIM+ in accu-
rately simulating real chip’s EM emanations, we design and
fabricate a chip named AES-128 that implements the AES
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Fig. 10. The overview of the experimental setup.

circuit in Section I'V. Silicon measurements are used as ground
truth to train the GAN model of EMSIM+GAN from scratch.

A. Experimental Setup

The die area of the AES-128 chip [9] is 1.6 mm x 1.3 mm,
and the supply voltage and clock frequency are set to 1.8V
and 25 Mhz, respectively. To collect the EM traces during
the operation of AES-128, we assemble an EM side-channel
information acquisition platform as shown in Figure 10. This
setup comprises a three-axis positioning platform, an ICR
HH 250 -75 near-field probe, an oscilloscope, and a PC. The
three-axis positioning platform precisely controls the probe to
execute near-field scans of the IC surface with a step of 80
um. The probe has a resolution of 150 um and an internal
preamplifier to amplify the signal to +30 dB magnification.
During the measurement, 1 K random plaintexts and a fixed
key are loaded to AES-128 for encryption. The collected signal
is sampled at 2.5 GSa/s and averaged over 32 measurements as
the final EM data. These EM maps, together with cell current
and power grid maps extracted by EMSIM, serve as the dataset
for training the GAN model of EMSIM+GAN from scratch,
employing the parameters in section III-C.

B. EM Security Evaluation Results

1) EM Emanations: We choose a specific time point to con-
struct EM maps of the AES-128 chip surface. This time point
corresponds to the clock cycle during which AES-128 executes
a SubByte operation, targeting the first four bytes. The results
of silicon measurements and EMSIM+GAN are represented
in Figure 11(a) and 11(b), respectively. A remarkable consis-
tency is observed in the distribution and amplitude of the EM
information acquired through both silicon measurements and
EMSIM+GAN. The EM maps exhibit high fidelity, with NCC
and SSIM metrics reaching 99.5% and 94.2%, respectively.

2) Security  Evaluation: ~ We further evaluate the
side-channel security of the chip by performing CEMA
for each location on the chip surface. The attack results
at the hotspots are translated into the MtD representation
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in Figure 12(a) and 12(b). For silicon measurements,
MtD =~ 173 and for EMSIM+GAN, MtD = 265. Due
to the test noise, EM interference, and the trigger system,
amplitude variations, and slight timing misalignments can
be caused between post-silicon and pre-silicon data. These
non-ideal factors impact the EM map’s accuracy, but the
resulting MtD values remain within acceptable limits for
side-channel evaluation. Therefore, these experimental results
affirm the proficiency of EMSIM+GAN in simulating the
EM distribution of a real chip based on the cell current and
grid information at the layout level, effectively capturing
differences between pre-silicon simulation and post-silicon
measurements.

VI. EMSIM+GAN+TL Vs THE LATEST METHOD

The generalization ability of EMSIM+GAN+TL across
different design spaces and the reliability of security evaluation
are demonstrated in this section. We select the AES from
Section IV as the benchmark circuit to emulate the actual
security chip design flow. We implement different protec-
tion schemes for AES and transition to a more advanced
technology node. EMSIM+GAN+TL applies TL based on
the pre-trained model in Section IV, fine-tuning the model
to accommodate design variations before conducting security
assessments.

A. Experimental Setup

Table IV lists the key information used for feature extrac-
tion in the 4 selected experimental designs. AES_mask_1,
AES_mask_2 and AES_pg are physically implemented using
SMIC 180 nm CMOS technology, while AES_55nm is imple-
mented using SMIC 55 nm CMOS technology. All designs
are operated at a 25 MHz clock frequency and 1.8 V supply
voltage. Specific details of the 4 designs are shown below.
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TABLE IV
DESIGNS USED IN EXPERIMENT III
Feature 2 . .
Design Area (um=) | Logical cells | Top metal wires
AES_mask_1 1140 x 840 10360 878
AES_mask_2 960 x 960 15995 408
AES_pg 1140 x 840 14448 1186
AES_55nm 346 x 346 14543 5510
u S J J (]
Core
- M3
. M4
M5
M6
sV b b ]
(a) AES (b) AES_pg
Fig. 13. Power grids of AES and AES_pg.

1) AES_mask_1: This implementation draws inspiration
from the renowned classical masking scheme proposed by
Oswald et al. [21]. It uses a combination of additive and
multiplicative masks to achieve first-order SCA protection on
the AES algorithm.

2) AES_mask_2: The implementation improves the Rotat-
ing S-box Mask (RSM) and proposes a cyclic shift random
mask scheme based on the tower domain [22], that operates
directly on the S-box after the addition of the mask, saving
hardware overhead and resource consumption.

3) AES_pg: This implementation uses a physical protection
strategy [23]. Based on the AES benchmark, two sets of
vertical power strips are added to the M5 layer and two
sets of horizontal power strips are added to the M6 layer.
These power strips are uniformly distributed with 40pum width.
A comparison of the power grid for AES and AES_pg is shown
in Figure 13.

4) AES_55nm: This is an AES benchmark design imple-
mented using SMIC 55 nm CMOS technology.

Our experiments are built on the assumption that the
designer initially trained an EMSIM+GAN model to generate
EM data for security evaluation following the completion of
an initial AES design. Upon identifying a security vulner-
ability, the designer introduces protection schemes or opts
to replace the process node, followed by a reevaluation.
To reduce the time required for generating a new model,
EMSIM+GAN+TL treats the modified design as a target task
(T;) and uses only 500 sample pairs to fine-tune the existing
EMSIM+GAN model. For the evaluation, we also prepare
cell current and power grid maps for the EMSIM+GAN+TL
flow. The fine-tuned GAN model is then employed to predict
EM data for security evaluation.

B. EM Security Evaluation Results

1) EM Emanations and Accuracy Analysis: Figure 14 com-
pares the EM maps of four designs and the EM maps predicted
by EMSIM+GAN+TL at a specific point in time. Table V
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Fig. 14.  EM map prediction results from EMSIM and EMSIM+GAN+TL.

summarizes the accuracy performance of EMSIM+GAN+TL
for the above designs. Notably, the EM maps generated
by EMSIM+GAN+TL achieve NCC and SSIM values
exceeding 99.5%. These experimental results demonstrate that
EMSIM+GAN+TL effectively improves the performance of
T;, attaining the desired accuracy by transferring the experi-
ences of Ty within the relevant domain. These high accuracy
results underscore the versatility and adaptability of the pro-
posed EMSIM+GAN+TL for tasks spanning various design
and technology nodes.

2) Security Evaluation of AES_mask_1: Initially, We inves-
tigate the first-order security of AES_mask_1. According to
Security Level III, we use EMSIM+GAN4TL to generate
10 K EM traces to analyze the potential security vulnerabil-
ities of AES_mask_1. To accomplish this, we construct the
HW matrix as an information leakage model by targeting
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TABLE V
ACCURACY PERFORMANCE OF EMSIM+GAN+TL

Mot Design | AES mask_1 | AES_mask 2 | AES_pg | AES_S5nm
etric
Generator loss 3.9909e-04 2.4904¢e-04 1.8881e-04 | 3.2918e-04
NCC 99.9% 99.9% 99.9% 99.9%
SSIM of EM map 99.5% 99.8% 99.9% 99.5%
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Fig. 15.

EM leakage evaluation results of AES_mask_1.
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Fig. 16. EM leakage evaluation results of AES_mask_2 and AES_pg.

the registers of the S-Box module. CEMA is carried out
on AES_mask_1 by systematically traversing all grid tiles
positioned on the chip surface. Then, the correlation traces
corresponding to key candidates are calculated at the targeted
leakage hotspot. The results of the EM leakage evaluation are
shown in Figure 15 (a), affirming the robustness of the masking
scheme in preserving the integrity of the correct key.

Nevertheless, is the design really secure? Or is
the key unbreakable because the data predicted by
EMSIM+GAN-+TL lacks the side-channel information
associated with the plaintext and the key? To investigate
further, we target the internal logic gates of the S-Box
module, performing EM leakage analysis by constructing
a toggle-count matrix as a leakage model. The results in
Figure 15 (b) demonstrate that 10 K traces are sufficient to
reveal the correct key. Therefore, the above analysis results
demonstrate that EM data predicted by EMSIM+GAN+TL
can be used to evaluate the effectiveness of protection
schemes effectively and can diagnose potential security
vulnerabilities in circuits.

3) Security Evaluation of AES_mask_2: To further enhance
the protection of AES circuits against CEMA attacks,
AES_mask_2 employs new protective scheme. The analysis
method is consistent with that of AES_mask_1. The results of
the EM leakage evaluation are shown in Figure 16 (a), where
the correct key is safeguarded by masking operations. This
demonstrates the efficacy of tower domain-based cyclic shift
random masking as a protective measure.

4) Security Evaluation of AES_pg: Next, we measure the
robustness of the power grid-based physical protection strategy
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Fig. 17. EM leakage evaluation results of AES_55nm.

against SCA. The CEMA results for 10 K EM traces under the
HD model are depicted in Figure 16 (b), showcasing the high
resistance of AES_pg to SCA. In practical security chip design
and manufacturing, EMSIM+GAN++TL allows designers to
iteratively redesign power grids and efficiently evaluate chip
security until meeting the desired security requirements.

5) Security Evaluation of AES_55nm: Finally, Figure 17
displays the CEMA results of AES_55nm under the HD
model. The comparison of the leakage maps generated
from EMSIM and EMSIM+GAN+TL demonstrates that
EMSIM+GAN+TL can overcome the technology node-
specific limitations, enabling fast transfer across different
process nodes.

C. Evaluation Efficiency Analysis

The advantage of EMSIM+GAN+TL over the
EMSIM+GAN lies in its ability to significantly reduce
the time required to acquire a new model from scratch by
leveraging prior knowledge. Once the model is trained, the
prediction speed of EMSIM4+GAN and EMSIM+GAN+TL
is practically the same. In fact, the number of samples needed
for training the EMSIM+GAN and EMSIM+GAN+4TL
models differs, primarily due to variations in sample designs
and the differences between the new and previous design
versions (e.g., process node changes, design modifications,
etc.).

In this study, the training dataset for TL is reduced to
500 sample pairs, resulting in approximately half the training
time for EMSIM4+GAN+TL compared to EMSIM+GAN.
Additionally, we modify the sample size from 1000 to 500 in
the Equation (9) and (10) to compare the execution times of
EMSIM and EMSIM+GAN+TL.

We assume that when using EMSIM+GAN-+TL for secu-
rity evaluation, there exists a pre-trained GAN model adapted
to Ty. The execution times and time ratio 7., of EMSIM
and EMSIM+GAN++TL across different circuits and data
volumes (ranging from 1 K to 1 M traces) are displayed in
Figure 18. It is evident that building upon the base model of the
Ts, EMSIM+GAN+TL begins to demonstrate its advantages
starting from a measured data volume of around 1 K, with
efficiency improvements ranging from 1.89 ~ 1.94 times.
Specifically, for the 10 K and 100 K traces correspond-
ing to security level III and IV in ISO/IEC 17825-2016,
EMSIM+GAN+TL demonstrates a substantial enhancement
in efficiency, exhibiting improvements by factors of 14.22 ~
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across different circuits and number of traces.

18.85 times and 113.37 ~ 149.23 times for each dataset. Fur-
thermore, when assessing 1 M traces, the time efficiency of the
evaluation is expected to increase by 282.04 ~ 483.98 times.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we develop a novel framework named
EMSIM+ for fast pre-silicon EM leakage evaluation. The
key idea of EMSIM+ is to introduce ML into the
EM security evaluation domain and propose two evalua-
tion frameworks, EMSIM+GAN and EMSIM+GAN+TL.
EMSIM+GAN leverages GAN to learn the transient map-
pings from layout-level cell current data and power grid
data to EM data, mitigating the efficiency challenges
of traditional simulators in single security evaluations.
EMSIM+GAN+TL integrates the TL methodology to sig-
nificantly reduce the number of samples needed to train
GAN models for new designs, allowing EMSIM+’s swift
adaptation across different designs and technology nodes.
Experimental results show that EMS1M+ can provide fast and
accurate feedback at the secure chip design stage with more
than ~ 242x efficiency improvement over state-of-the-art
methods.

In future work, we will investigate more intelligent current
decomposition schemes to address potential errors caused by
the assumption of uniform distribution, compensating for cur-
rent imbalances. Additionally, we will systematically examine
the relationship between chip size and resolution selection to
avoid model imbalance arising from significant variations in
chip size. This will be achieved by employing adaptive pooling
layer structures or leveraging transfer learning.

[1]

[2

—

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

REFERENCES

P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Proc.
Annu. Int. Cryptol. Conf. Santa Barbara, CA, USA: Springer, 1999,
pp. 388-397.

Y. Zhao et al., “Side channel security oriented evaluation and protection
on hardware implementations of kyber,” IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 70, no. 12, pp. 5025-5035, Dec. 2023.

K. Monta et al., “Silicon-correlated simulation methodology of EM
side-channel leakage analysis,” ACM J. Emerg. Technol. Comput. Syst.,
vol. 19, no. 1, pp. 1-23, Jan. 2023.

M. Ramdani et al., “The electromagnetic compatibility of integrated
circuits—Past, present, and future,” IEEE Trans. Electromagn. Compat.,
vol. 51, no. 1, pp. 78-100, Feb. 2009.

Y. Gao, Q. Zhang, H. Ma, J. He, and Y. Zhao, “EO-shield: A multi-
function protection scheme against side channel and focused ion beam
attacks,” in Proc. 28th Asia South Pacific Design Autom. Conf. (ASP-
DAC), Jan. 2023, pp. 670-675.

H. Li, A. T. Markettos, and S. Moore, “Security evaluation against
electromagnetic analysis at design time,” in Proc. 10th IEEE Int. High-
Level Design Validation Test Workshop, Nov. 2005, pp. 211-218.

V. Lomné, P. Maurine, L. Torres, T. Ordas, M. Lisart, and J. Toublanc,
“Modeling time domain magnetic emissions of ICs,” in Proc. Int.
Workshop Power Timing Modeling, Optim. Simulation. Springer, 2010,
pp. 238-249.

A. Kumar, C. Scarborough, A. Yilmaz, and M. Orshansky, “Efficient
simulation of EM side-channel attack resilience,” in Proc. IEEE/ACM
Int. Conf. Comput.-Aided Design (ICCAD), Nov. 2017, pp. 123-130.
H. Ma, M. Panoff, J. He, Y. Zhao, and Y. Jin, “EMSim: A fast layout
level electromagnetic emanation simulation framework for high accuracy
pre-silicon verification,” IEEE Trans. Inf. Forensics Security, vol. 18,
pp. 1365-1379, 2023.

M. B. Alawieh, W. Li, Y. Lin, L. Singhal, M. A. Iyer, and D. Z. Pan,
“High-definition routing congestion prediction for large-scale FPGAs,”
in Proc. 25th Asia South Pacific Design Autom. Conf. (ASP-DAC),
Jan. 2020, pp. 26-31.

Y.-C. Lu, J. Lee, A. Agnesina, K. Samadi, and S. K. Lim, “GAN-CTS: A
generative adversarial framework for clock tree prediction and optimiza-
tion,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD),
Nov. 2019, pp. 1-8.

V. A. Chhabria, V. Ahuja, A. Prabhu, N. Patil, P. Jain, and
S. S. Sapatnekar, “Thermal and IR drop analysis using convolutional
encoder—decoder networks,” in Proc. 26th Asia South Pacific Design
Autom. Conf. (ASP-DAC), Jan. 2021, pp. 690-696.

1. J. Goodfellow et al., “Generative adversarial networks,” Commun.
ACM, vol. 63, no. 11, pp. 139-144, 2020.

K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer
learning,” J. Big Data, vol. 3, no. 1, pp. 1-40, May 2016.

G. Singha, D. Diamantopoulosb, J. Goémez-Lunaa, S. Stuijke,
H. Corporaalc, and O. Mutlua, “LEAPER: Fast and accurate FPGA-
based system performance prediction via transfer learning,” in Proc.
IEEE 40th Int. Conf. Comput. Design (ICCD), Oct. 2022, pp. 499-508.
J. Kwon and L. P. Carloni, “Transfer learning for design-space explo-
ration with high-level synthesis,” in Proc. ACM/IEEE 2nd Workshop
Mach. Learn. CAD (MLCAD), Nov. 2020, pp. 163-168.

Y. Lin et al., “Data efficient lithography modeling with transfer learning
and active data selection,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 38, no. 10, pp. 1900-1913, Oct. 2019.

T. Gai et al., “Flexible hotspot detection based on fully convolutional
network with transfer learning,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 41, no. 11, pp. 4626-4638, Nov. 2022.

Y. Wang and M. Tang, “A survey of side-channel leakage assessment,”
Electronics, vol. 12, no. 16, p. 3461, Aug. 2023.

J.-J. Quisquater and D. Samyde, “Electromagnetic analysis (EMA):
Measures and counter-measures for smart cards,” in Proc. Int. Conf.
Res. Smart Cards. Berlin, Germany: Springer, 2001, pp. 200-210.

E. Oswald, S. Mangard, N. Pramstaller, and V. Rijmen, “A side-channel
analysis resistant description of the AES S-box,” in Proc. Int. Workshop
Fast Softw. Encryption. Berlin, Germany: Springer, 2005, pp. 413-423.
Y. Yan, J. Wang, and Y. Liu, “Design method of generic cyclic shift
mask based on tower field,” J. Electron. Inf. Technol., vol. 43, no. 9,
pp. 2489-2497, 2021.

M. Wang et al., “Physical design strategies for mitigating fine-grained
electromagnetic side-channel attacks,” in Proc. IEEE Custom Integr.
Circuits Conf. (CICC), Apr. 2021, pp. 1-2.



Ya Gao received the B.S. degree in electronic
science and technology from Tianjin University,
Tianjin, China, in 2020, where she is currently
pursuing the Ph.D. degree with the School of Micro-
electronics. Her current research interests include
hardware security, EDA tools, and machine learning.

Haocheng Ma received the B.S. degree in micro-
electronics from Tianjin University, Tianjin, China,
in 2017, and the Ph.D. degree from the School
of Microelectronics, Tianjin University, in 2023.
His current research interests include digital circuit
design, hardware security, and EDA for security.

Qizhi Zhang received the B.S. degree in micro-
electronics from Tianjin University, Tianjin, China,
in 2019, where he is currently pursuing the Ph.D.
degree in microelectronics and solid state electronics
with the School of Microelectronics. His current
research interests include digital circuit design, hard-
ware security, and formal verification.

Xintong Song received the master’s degree in
chemical engineering from Georgia Institute of
Technology in 2017 and the master’s degree in
computer engineering from New York University
in 2020. He is currently pursuing the Ph.D. degree
with the School of Microelectronics, Tianjin Uni-
versity. He was a System Software Engineer with
Sina Corporation. His research interests include
fully homomorphic encryption (FHE), post-quantum
cryptography (PQC), and cryptography software and
hardware co-design and optimization techniques.

GAO et al.: EMSIM+: ACCELERATING ELECTROMAGNETIC SECURITY EVALUATION WITH GAN AND TL

»

9893

Yier Jin (Senior Member, IEEE) received the B.S.
and M.S. degrees in electrical engineering from Zhe-
jiang University, China, in 2005 and 2007, respec-
tively, and the Ph.D. degree in electrical engineering
from Yale University in 2012. He is currently an
Associate Professor and a Warren B. Nelms IoT
Term Professor with the Department of Electrical
and Computer Engineering (ECE), University of
Florida (UF), and also a Professor with the School
of Cyber Science and Technology, University of Sci-
ence and Technology of China. His research focuses

on the areas of hardware security, embedded systems design and security,
trusted hardware intellectual property (IP) cores, and hardware-software co-
design for modern computing systems. He is also interested in the security
analysis on the Internet of Things (IoT) and wearable devices with particular
emphasis on information integrity and privacy protection in the IoT era.

Jiaji He received the B.S. degree in electronic sci-
ence and technology and the M.S. and Ph.D. degrees
in microelectronics from Tianjin University in 2013,
2015, and 2019, respectively. He was a Visiting
Scholar with UCF and UF from 2016 to 2018.
He was a Post-Doctoral Research Fellow with the
Institute of Microelectronics, Tsinghua University,
from 2019 to 2021. He is currently an Associate Pro-
fessor with Tianjin University. His research interests
include digital circuit design, hardware security, and
EDA for security.

Yiqiang Zhao received the B.S. degree in semi-
conductor physics and device, the M.S. degree in
microelectronics, and the Ph.D. degree in micro-
electronics and solid-state electronics from Tianjin
University, Tianjin, China, in 1988, 1991, and 2006,
respectively.

In 1991, he joined the Jinhang Technical Physics
Institute, Tianjin, where he was responsible for ana-
log and mixed signal circuit design. Since 2001,
he has been with the School of Electronic Informa-
tion Engineering and the School of Microelectronics,

Tianjin University, where he is currently a Professor. His research interests
include mixed-signal integrated circuits, security chips, and hardware security.



